Tồn tại hay không số \(\overline{abc}\) \(=\left(a+b+c\right)^3\) với a, b, c là 3 chữ số khác nhau
tồn tại hay không số abc =(a+b+c)3 (với a,b,c là 3 chữ số khác nhau)
giả sử tồn tại,
vì abc là số có 3 chữ số nên 99 < abc < 1000 mà abc = (a+b+c)3 do đó
a+b+c chỉ có thể nhận các giá trị bằng 5; 6; 7; 8; 9
nếu a+b+c = 5 => abc = 53 = 125 khác (1+2+5)3 = 83
nếu a+b+c = 6 => abc = 63 = 216 khác (2+1+6)3 = 93
nếu a+b+c = 7 => abc = 73 = 343 khác (3+4+3)3 = 103
nếu a+b+c = 8 => abc = 83 = 512 = (5+1+2)3 = 83 (nhận)
nếu a+b+c = 9 => abc = 93 = 729 khác (7+2+9)3 = 183
Vậy có tồn tại ......
1, Có tồn tại hay không các số a, b, c thỏa mãn : \(\left|a-b\right|+2015\left|b-c\right|+2021\left|c-a\right|=45\)
2, Tìm \(\overline{abc}\)sao cho \(7a=3b+4c\)
3, Tìm 2 số tự nhiên sao cho tổng , hiệu , thương , của 2 số đó cọng lại bằng 38
4, CMR \(S=\overline{abc}+\overline{bca}+\overline{cab}\)( với \(a,b,c\)là các chữ số khác 0 ) không là số chính phương
tồn tại hay không số abc = (a+b+c)3 với a,b,c là 3 chữ số khác nhau (abc la mot so chu ko phai la tich nhe)
1,tìm tất cả các bộ 3 số nguyên tố a,b,c đôi một khác nhau thỏa mãn điều kiện
\(20abc< 30\left(ab+bc+ca\right)< 21abc\)
2, Có bao nhiêu số nguyên dương có 5 chữ số \(\overline{abcde}\) sao cho \(\overline{abc}-\left(10d+e\right)⋮101\)
1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học
2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365
Cho a, b, c là các chữ số khác nhau. Hãy tìm n là số tự nhiên để \(\frac{1}{\overline{0.\left(abc\right)}}=n\)
Cho \(f\left(x\right)=x^3-3x\)
a. Chứng minh rằng tồn tại các số thực a, b, c đôi một phân biệt sao cho \(f\left(a\right)=b,f\left(b\right)=c,f\left(c\right)=a\)
b. Giả sử tồn tại 3 bộ số thực \(\left(a_i,b_i,c_i\right)\) với \(i=\overline{1,3}\) gồm 9 số đôi một phân biệt sao cho \(f\left(a_i\right)=b_i,f\left(b_i\right)=c_i,f\left(c_i\right)=a_i\) với \(i=\overline{1,3}\). Đặt \(S=a_i+b_i+c_i\) với \(i=\overline{1,3}\), chứng minh rằng \(S_1^2+S_2^2+S_3^2\ne S_1S_2+S_2S_3+S_1S_3\)
1/hỏi có hay không 16 số tự nhiên, mỗi số có 3 chữ số được tạo thành từ ba chữ số a,b,c thỏa mãn hai số bất kỳ trong chúng không có cùng số dư khi chia cho 16?
2/cho a,b,c là các số thực dương thỏa mãn abc=1.chứng minh: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(a+1\right)\left(c+1\right)}\ge\frac{3}{4}\)
Các bn giúp mk bài này nha
1, Chứng minh rằng với mọi số nguyên tố p>2 thì không tồn tại các số nguyên dương m,n thỏa mãn :\(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
2, Cho 3 số thực khác 0 đôi một khác nhau và thỏa mãn : \(a^2\left(b+c\right)=b^2\left(a+c\right)\)=2014
tính giá trị biểu thức H=\(c^2\left(a+b\right)\)
bài 2 bn nên cộng 3 cái lại
mà năm nay bn lên đại học r đúng k ???
Tìm các chữ số a, b,c khác nhau sao cho: \(\overline{abc}:\left(a+b+c\right)=25\)
Ta có:
\(\overline{abc}:\left(a+b+c\right)=25\)
\(\Rightarrow\overline{abc}=25\left(a+b+c\right)\)
\(\Rightarrow\overline{abc}⋮25\Rightarrow\left[{}\begin{matrix}\overline{abc}=\overline{a00}\\\overline{abc}=\overline{a25}\\\overline{abc}=\overline{a50}\\\overline{abc}=\overline{a75}\end{matrix}\right.\)
TH1:\(\overline{abc}=\overline{a00}\)
\(\Rightarrow\overline{a00}=25.a\)
\(\Rightarrow100a=25.a\)
\(\Rightarrow a=0\), loại.
TH2:\(\overline{abc}=\overline{a25}\)
\(\Rightarrow\overline{a25}=25\left(a+b+c\right)=25\left(a+2+5\right)=25a+175\)
\(\Rightarrow100a+25=25a+175\)
\(\Rightarrow100a-25a=175-25\)
\(\Rightarrow75a=150\Rightarrow a=2\)
\(\Rightarrow a=b=2\), loại.
TH3:\(\overline{abc}=\overline{a50}\)
\(\Rightarrow\overline{a50}=25\left(a+5+0\right)=25\left(a+5\right)=25a+125\)
\(\Rightarrow100a+50=25a+125\)
\(\Rightarrow75a=75\Rightarrow a=1\left(TM\right)\)
TH4:\(\overline{abc}=\overline{a75}\)
\(\Rightarrow\overline{a75}=25\left(a+7+5\right)=25a+300\)
\(\Rightarrow100a+75=25a+300\)\(\Rightarrow75a=225\Rightarrow a=3\left(TM\right)\)
Vậy \(\overline{abc}\in\left\{150;375\right\}\)