24^54 × 54^24 × 2^10 chia hết cho 72^63
Chứng minh rằng: 24^54 . 24^54 . 2^10 chia hết cho 72^63
chung minh: 24^54 x 54^24 x 2^10 chia hết 72^63
24^54 x 54^24 x 2^10=(2^3.3)^5 x (3^3.2)^24...
=(2^3)^54 x 3^54 x (3^3)^24 x 2^24 x 2^10
= 2^162 x 2^24 x 2^10 x 3^54 x 3^72
=2^196 x 3^126
72^63=(2^3 x 3^2)^63
=(2^3)^63 x (3^2)^63= 2^18 x 3^126
Vì 2^196 x 3^126 chia hết 2^189 x 3^126
=>24^54 x 54^24 x 2^10 chia hết 72^63
CM rằng : 2454.5424.210 chia hết cho 7263
Bạn tham khảo nhé! Mình không chắc là đúng hay không nữa
https://hoc24.vn/hoi-dap/question/124418.html
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)\(=2^{3.54}.3^{54}.3^{3.24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{72}.2^{24}.2^{10}=2^{162+72+54+10}.3^{54+72}\)\(=2^{298}.3^{126}\).
\(72=3^3.2^3\)
\(72^{63}=\left(3^3.2^3\right)^{63}=3^{189}.2^{189}\)
Như vậy đề bài sai.
CMR
2454.5424.210 CHIA HẾT CHO 7263
Chứng minh rằng: 2454.5424.210 chia hết cho 7263
24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24...
=(2^3)^54.3^54.(3^3)^24.2^24.2^10
= 2^162.2^24.2^10.3^54.3^72
=2^196.3^126
72^63=(2^3.3^2)^63
=(2^3)^63(.3^2)^63=2^189.3^126
vì 2^196.3^126 chia hết 2^189.3^126
=>24^54.54^24.2^10 chia hết 72^63
Cảm ơn bạn nhìu lắm.Mình cho luôn **** rồi nhé
CMR 24 mũ 54 nhân 54 mũ 24 nhân 2 mũ 10 chia hết 72 mũ 63
Chứng tỏ 2454.5424.210 chia hết cho 7263
2454.5424.210 = (23.3)54.(2.33)24.210 = 2162.354.224.372.210 = 2196.3126 = 27(2189.3126) = 27.[(23)63.(32)63] = 27.(863.963) = 27.7263 chia hết cho 7263
Tính: (1 - 1/4 ) . (1 - 1/9) . (1 - 1/16) ... (1 - 1/81) . (1 - 1/100)
-Ta có:
+\(72^{63}=\left(2^3\cdot3^2\right)^{63}=\left(2^3\right)^{63}\cdot\left(3^2\right)^{63}=2^{189}\cdot3^{126}\)
+\(24^{54}\cdot54^{24}\cdot2^{10}\)
=\(\left(2^3\cdot3\right)^{54}\cdot\left(2\cdot3^3\right)^{24}\cdot2^{10}\)
=\(2^{162}\cdot3^{54}\cdot2^{24}\cdot3^{72}\cdot2^{10}\)
=\(2^{196}\cdot3^{126}\)
=\(2^7\cdot2^{189}\cdot3^{126}\)
Vì \(2^7\cdot2^{189}\cdot3^{126}⋮2^{189}\cdot3^{126}\)
\(\Rightarrow24^{54}\cdot54^{24}\cdot2^{10}⋮2^{63}\)
2454 x 5424 x 210 chia hết cho 7263
Chứng minh rằng;
\(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)
\(24^{54}.54^{24}.2^{10}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)
\(=2^{196}.3^{126}\)
Lại có :
\(72^{63}=\left(2^3.3^2\right)^{63}\)
\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}\)
\(=2^{189}.3^{126}\)
Vì \(2^{196}.3^{126}⋮2^{189}.3^{126}\Leftrightarrowđpcm\)