Tìm chữ số thích hợp thay cho a và b , biết
\(\overline{ab}\) . 9 = \(\overline{a0b}\)
Bài 1: Thay các chữ a, b, c, d bằng các số thích hợp:
\(\overline{ab}\times\overline{cd}=\overline{bbb}\)
Bài 2: Điền các chữ số vào dấu hỏi và vào các chữ sau:
a) \(\overline{abcd}\times\overline{dcba}=\overline{?????000}\)
b) \(????+????=?9997\)
Bài 3: Tìm số tự nhiên biết tổng của nó và các chữ số của nó bằng 1987.
Bài 4: Cho a là số có bốn chữ số, tổng các chữ số của a là b. Tổng các chữ số của b là c. Biết a + b + c = 1989. Tìm a.
Bài 5: Tìm số tự nhiên nhỏ nhất chia hết cho 1987 mà 5 chữ số đầu tiên bên trái của số tự nhiên đó đều là 1.
Bài 6: Tìm các chữ số a, b, c để: \(\overline{abbc}=\overline{ab}\overline{ }\times\overline{ac}\times7\)
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
thay các chữ a,b,c bằng chữ số không giống nhau thích hợp
\(\overline{ab}\times\overline{cc}\times\overline{abc}=\overline{abcabc}\)
giải
biến đổi đẳng thức thành
\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)
\(\overline{ab}.c=1001\div11=91\)
phân tích ra thừa số nguyên tố \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là \(13.7\)hoặc \(91.1\)
th1 cho \(\overline{ab}=13,c=7\)
th2 cho \(\overline{ab}=91,c=1\)loại vì b=c
vậy ta có \(13.77.137=137137\)
Sửa một chút nhé:
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)
<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)
<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)
<=> \(\overline{ab}.c.11=1001\)
<=> \(\overline{ab}.c=91\)
Thay mỗi chữ dưới đây bởi chữ số thích hợp:
\(\overline{a,b}\) x \(\overline{c,c}\) x \(\overline{a,bc}\) x = \(\overline{ab,cabc}\)
Tin Nóng: Ai nhanh tay trả lời mình tick nhé!!!
Thay các chữ cái bằng các chữ số thích hợp:
A) \(\overline{3a,b}\times\overline{0,b}=\overline{16,ab}\)
B)\(\overline{a,bc}\times4,1=\overline{15,abc}\)
C)\(\overline{ab,ab}\div\overline{ab}=\overline{ab,a}\)
D)\(\overline{aa,aa}\div\overline{ab,a}=\overline{a,a}\)
Mọi người trả lời, giải thích lời giải dùm em với ạ!!!
Tìm chữ số thích hợp ở dấu * để số:
a) \(\overline{13\text{*}}\) chia hết cho 5 và 9;
b) \(\overline{67\text{*}}\) chia hết cho 2 và 3.
1. Thay x,y bởi các chữ số thích hợp để được số chia hết cho 5, cho 25
a) \(\overline{275x};\overline{27xy}\)
2. Thay x,y bởi các chữ số thích hợp để đc số chia hết cho 2;4;8;\(\overline{aaa}\)
b) \(\overline{9xy4}\)
Tìm chữ số thích hợp ở dấu * để số:
a) \(\overline{3\text{*}7}\) chia hết cho 3;
b) \(\overline{27\text{*}}\) chia hết cho 9.
327 hay 357 hay 387 đều chia hết cho 3.
270 hay 279 đều chia hết cho 9.
Thay a,b bằng chữ số thích hợp để số 2a5b chia hết cho cả 2; 5 và 9. Phân tích số A ra thừa số nguyên tố với a,b vừa tìm được
Tìm chữ số a và b biết
\(\overline{7a4}\)+\(\overline{5b1}\)\(⋮\) 9 và a-b=6
Ta có :
7a4 + 5b1 = 704 + 10a + 501 + 10b
= ( 704 + 501 ) + ( 10a + 10b )
= 1205 + 10( a + b )
Vì 1205 chia 9 dư 8
=> 10( a + b ) chia 9 dư 1
=> a + b chia 9 dư 1 do ( 10 , 9 ) = 1
Mà a - b = 6
=> a = b + 6 => 10( a + b ) = 10 . ( b + 6 + b )
= 10 . ( 2b + 6 )
= 10 . [ 2 . ( b + 3 )]
= 20 . ( b + 3 )
=> b + 3 chia 9 dư 1 do ( 20 , 9 ) = 1
=> b = 7 ( do b là chữ số )
=> a = b + 6 = 13 ( vô lý )
Vậy không có chữ số a và b thỏa mãn yêu cầu đề bài