Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thị Thùy Trang
Xem chi tiết
Võ Phương Diễm
Xem chi tiết
Cỏ dại
Xem chi tiết
Trần Thanh Phương
9 tháng 6 2019 lúc 18:09

a) ĐKXĐ : \(\orbr{\begin{cases}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{cases}}\)

\(\sqrt{x^2-3}=x^2-3\)

\(\Leftrightarrow\sqrt{x^2-3}=\sqrt{x^2-3}\cdot\sqrt{x^2-3}\)

\(\Leftrightarrow\sqrt{x^2-3}-\sqrt{x^2-3}\cdot\sqrt{x^2-3}=0\)

\(\Leftrightarrow\sqrt{x^2-3}\left(1-\sqrt{x^2-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-3}=0\\\sqrt{x^2-3}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x^2-3=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\in\left\{\pm\sqrt{3}\right\}\\x\in\left\{\pm2\right\}\end{cases}}\)( thỏa mãn )

b) ĐKXĐ : \(x\le6\)

\(\sqrt{x^2-6x+9}=6-x\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=6-x\)

\(\Leftrightarrow\left|x-3\right|=6-x\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=6-x\\x-3=x-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=9\\0x=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{2}\\x\in\varnothing\end{cases}}\)( thỏa mãn )

Lan Anh Chúng Thị
Xem chi tiết
Đen đủi mất cái nik
22 tháng 7 2018 lúc 7:44

a,\(\sqrt{x^2-3}\le x^2-3\)

\(\Leftrightarrow x^2-3\le x^4-6x^2+9\)

\(\Leftrightarrow x^4-6x^2-x^2+12\ge0\)

\(\Leftrightarrow x^4-7x^2+12\ge0\)

\(\Leftrightarrow x^4-\frac{2.7}{2}.x^2+\frac{49}{4}-\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(x^2-\frac{7}{2}\right)^2\ge\frac{1}{4}\)

\(\Leftrightarrow x^2-\frac{7}{2}\ge\frac{1}{2}\Leftrightarrow x^2\ge4\)

\(\Leftrightarrow x\le-2\)và \(x\ge2\)

KL:

b,\(\sqrt{x^2-6x+9}>x-6\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}>x-6\)

\(\Leftrightarrow|x-3|>x-6\)

Với x\(\ge\)3  phương trình   <=>x-3>x-6  (luôn đúng)

Với x<3 phương trình <=> 3-x>x-6  <=>x<9/2 <=>x<4,5

KL:

Vy Vũ
Xem chi tiết
Ly Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 13:33

a: Khi x=25 thì \(A=\dfrac{5-2}{5-3}=\dfrac{3}{2}\)

b: P=A*B

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\left(\dfrac{6x+6\sqrt{x}-12}{x+5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\left(\dfrac{6x+6\sqrt{x}-12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\dfrac{6x+6\sqrt{x}-12-5x-5\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

c: \(\sqrt{P}< =\dfrac{1}{2}\)

=>0<=P<=1/4

=>\(\left\{{}\begin{matrix}P>=0\\P-\dfrac{1}{4}< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{1}{4}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}+1}{4\left(\sqrt{x}-1\right)}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{3\sqrt{x}-7}{\sqrt{x}-1}< =0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< \sqrt{x}< =\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< x< \dfrac{49}{9}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\x=\dfrac{49}{9}\end{matrix}\right.\)

=>\(4< =x< =\dfrac{49}{9}\)

mà x nguyên

nên \(x\in\left\{4;5\right\}\)

Tô Hoài Dung
Xem chi tiết
Yết Thiên
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 1 2022 lúc 23:47

\(a,P=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

\(b,P=\dfrac{1}{2}\Leftrightarrow4-10\sqrt{x}=\sqrt{x}+3\Leftrightarrow\sqrt{x}=\dfrac{7}{11}\Leftrightarrow x=\dfrac{49}{121}\left(tm\right)\)

\(c,P-\dfrac{2}{3}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{2}{3}=\dfrac{6-15\sqrt{x}-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)

Ta có \(3\left(\sqrt{x}+3\right)>0;-17\sqrt{x}\le0,\forall x\)

\(\Rightarrow P-\dfrac{2}{3}\le0\Leftrightarrow P\le\dfrac{2}{3}\left(đpcm\right)\)

Minh Anh Vũ
Xem chi tiết
missing you =
30 tháng 7 2021 lúc 17:14

a, đk: \(x\ge0,x\ne9,x\ne4\)

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2-\sqrt{x}}{-\left(\sqrt{x}-3\right)\left(2-\sqrt{x}\right)}=\dfrac{-1}{\sqrt{x}-3}\)

b,\(Q< -1=>\dfrac{-1}{\sqrt{x}-3}+1< 0< =>\dfrac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)

\(< =>\dfrac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)

\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\)\(< =>\left[{}\begin{matrix}\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\end{matrix}\right.\)\(< =>9< x< 16\)

c, \(=>2Q=\dfrac{-2}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\in Z\)

\(< =>\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)\(=>x\in\left\{16;4\right\}\)(loại 4)

=>x=16

Nhan Thanh
30 tháng 7 2021 lúc 18:12

a) \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-3\dfrac{\sqrt{x}-1}{x-5\sqrt{x}+6}\) 

Ta có \(x-5\sqrt{x}+6=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>9\\x>2\end{matrix}\right.\) \(\Leftrightarrow x>9\)

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-3\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(x-4\right)-\left(x-2\sqrt{x}-3\right)-\left(3\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-1}{\left(\sqrt{x}-3\right)}=\dfrac{1}{3-\sqrt{x}}\)

b) \(Q< -1\Leftrightarrow\dfrac{1}{3-\sqrt{x}}< -1\) \(\Leftrightarrow\dfrac{1}{3-\sqrt{x}}+1< 0\) \(\Leftrightarrow\dfrac{4-\sqrt{x}}{3-\sqrt{x}}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-\sqrt{x}>0\\3-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4-\sqrt{x}< 0\\3-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow9< x< 16\)

Vậy để \(Q< -1\) thì \(S=\left\{x/9< x< 16\right\}\)

c) \(2Q\in Z\Leftrightarrow\dfrac{2}{3-\sqrt{x}}\in Z\)

\(\Rightarrow3-\sqrt{x}\inƯ\left(2\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}3-\sqrt{x}=2\\3-\sqrt{x}=-2\\3-\sqrt{x}=1\\3-\sqrt{x}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=25\\x=4\\x=16\end{matrix}\right.\)

Kết hợp với ĐKXĐ,ta có để \(2Q\in Z\) thì \(x\in\left\{16;25\right\}\)

 

Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 0:25

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)

Ta có: \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4-x+2\sqrt{x}+2-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-1}{\sqrt{x}-3}\)

c) Để 2Q là số nguyên thì \(-2⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1\right\}\)