Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Bên
Xem chi tiết
alibaba nguyễn
23 tháng 10 2016 lúc 9:00

\(1\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=1\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(1+3\sqrt{2}-\sqrt{6}-\sqrt{3}\right)\)

\(=1\left(\sqrt{6}+1\right)\left(2\sqrt{6}-2\right)\)

\(=2\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)=10\)

Cứ nhân lần lược vào rồi rút gọn sẽ được như trên

alibaba nguyễn
22 tháng 10 2016 lúc 23:13

Đọc cái đề giống như muốn hack não quá. Ghi rõ đi bạn

Anh Bên
23 tháng 10 2016 lúc 8:39

\(\left(\sqrt{2}+1\right)\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{6}+1\right)\cdot\left(5-2\sqrt{2}-\sqrt{3}\right)\)

Đây bạn. Giúp mình nhé @alibaba nguyễn

Trang Khúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 8 2023 lúc 13:59

a: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}-1}{3-\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

\(=\dfrac{2\sqrt{a}-9-a+9+2a-5\sqrt{a}+2}{\left(\sqrt{a}-2\right)\cdot\left(\sqrt{a}-3\right)}\)

\(=\dfrac{a-3\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}-1}{\sqrt{a}-3}\)

b: A là số nguyên

=>\(\sqrt{a}-3+2⋮\sqrt{a}-3\)

=>\(\sqrt{a}-3\in\left\{1;-1;2;-2\right\}\)

=>a thuộc {16;25;1}

Trang Khúc
Xem chi tiết
HT.Phong (9A5)
8 tháng 8 2023 lúc 10:55

Ta có: \(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}}{4-\sqrt{a}}\)

a) ĐKXĐ: \(a\ne4;a\ne16;a\ge0\)

\(P=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}-\dfrac{4\sqrt{a}}{\sqrt{a}-4}\)

\(P=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(P=\dfrac{a+3\sqrt{a}+2\sqrt{a}+6-a+2\sqrt{a}+\sqrt{a}-2-4\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)

\(P=\dfrac{4\sqrt{a}+4}{a-4}\)

b) Thay x=9 vào P ta có:

\(P=\dfrac{4\cdot\sqrt{9}+4}{9-4}=\dfrac{16}{5}\)

c) \(P< 0\) khi:

\(\dfrac{4\sqrt{x}+4}{a-4}< 0\) 

Mà: \(4\sqrt{x}+4>0\)

\(\Rightarrow a-4< 0\)

\(\Rightarrow a< 4\) 

kết hợp với Đk ta có:

\(0\le x< 4\)

Trang Khúc
Xem chi tiết
HT.Phong (9A5)
8 tháng 8 2023 lúc 11:01

Ny Huynh
Xem chi tiết
Băng
Xem chi tiết
Khanhmy
Xem chi tiết
Đinh Lan Phương
Xem chi tiết
Nguyễn Đức Trí
17 tháng 7 2023 lúc 16:08

\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)

\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :

\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)

\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)

\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)

\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)

Đinh Lan Phương
17 tháng 7 2023 lúc 16:15

sorry mn cho e sửa lại đề ạ

tìm gtln của p ạ

 

Hàn Khánh Huyền
Xem chi tiết