Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\) . Chứng minh c=0
1) Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a}{b}=\frac{a-c}{b-d}\left(b,d\ne0\right)\)
2) Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(a-b\ne0;c-d\ne0\right)\)
1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)
2) ta có \(\frac{a}{b}=\frac{c}{d}\)
đặt a=kb và c=kd
\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
chứng minh Từ \(\frac{a}{b}=\frac{c}{d}\left(\left(a-b\right)\ne0,\left(c-d\right)\ne0\right)\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho tỉ lệ thức:\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chứng minh rằng:c=0
cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b,c\ne0;b\ne c\right)\)) chứng minh rằng : \(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b,c\ne0,b\ne c\right)\).Chứng minh rằng\(\frac{a}{b}=\frac{a-c}{c-b}\)
cho \(\frac{a}{b}=\frac{c}{d}\left(b,c,d\ne0;c-2d\ne0\right)\)
chứng minh rằng \(\frac{\left(a-2b^4\right)}{\left(c-2d^4\right)}=\frac{a^4+2017b^4}{c^4+2017d^a}\)
Cho \(a,b,c\ne0;a+b+c=0\)và khác nhau từng đôi một.Chứng minh :
\(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)
Cho: \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b},\right)\left(a,b,c\ne0,b\ne c\right)\) Chứng minh rằng: \(\frac{a}{b}=\frac{a-b}{c-b}\)
Cho a+b+c=0 và \(a,b,c\ne0\) . Chứng minh đẳng thức
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
bài này bn bình phương cả hai vế lên là xong mà