\(B=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)
a) rút gọn B
b)tính A nếu \(\frac{a}{b}=\frac{3}{2}\)
c) tìm điều kiện của a, b để B<1
Cho biểu thức
\(B=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)
a)Rút gọn B
b) Tính B nếu \(\frac{a}{b}=\frac{3}{2}\)
c)Tìm điều kiện của a và b để B<1
cho biểu thức: \(B=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(1+\frac{a}{\sqrt{a^2-b^2}}\right)}{\frac{b}{a-\sqrt{a^2-b^2}}}\)
a, Rút gọn B
b, Tính B biết \(\frac{a}{b}=\frac{3}{2}\)
c, Tìm điều kiện của a,b để B nhỏ hơn 1
\(\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)
rút gọn
tính giá trị khi \(\frac{a}{b}=\frac{3}{2}\)
tìm điều kiện của a,b để biểu thức lơn hơn 1
bài 1: Cho biểu thức \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
a, rút gọn biểu thức A
b, tìm a để A=1
bài 2 : cho biểu thức \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
a, tìm điều kiện của x để B có nghĩa
b, rút gọn
c, tính giá trị biểu thức B tại x =\(3+2\sqrt{3}\)
bài 3 cho biểu thức \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right).\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
a, tìm y để B có nghĩa và rút gọn B
b, tính giá trị của biểu thức B biết y = \(3+2\sqrt{2}\)
GIÚP MÌNH VỚI TỐI MAI ĐI HC RỒI
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
\(ChoQ=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a, rút gọn
b, chứng minh nếu 0<x<1 thì Q>0
c, tìm GTLN của Q
\(ChoA=\frac{1}{2\left(1+\sqrt{x}+2\right)}+\frac{1}{2\left(1-\sqrt{x}+2\right)}\)
a, tìm x để a có nghĩa
b, rút gon A
c, tìm X nguyên để A nguyên
\(ChoA=\left(\frac{\sqrt{a}}{\sqrt{a-1}}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2}{a-1}\right)\)
a, Rút gọn A
b, tính A Khi a=3+\(2\sqrt{2}\)
A=\(\frac{a}{\sqrt{a^2}-b^2}-\left(1+\frac{a}{\sqrt{a^2}-b^2}\right):\frac{b}{a^2-\sqrt{a^2}-b^2}\)
a)rút gọn bt
b)tính A nếu \(\frac{a}{b}=\frac{3}{2}\)
c)tìm ĐK của a và b để a<1
khó was bạn yêu wys ơi !!!!!!!!!!!!!!!!!!!
C=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}}+1\right).\frac{\left(1-x\right)^2}{2}\)
a)Rút gọn C nếu x> hoặc = 0 và x khác 1
b)tìm x để C dương
c)tìm giá trị lớn nhất của C
cho biểu thức:
\(A=\left(1-\frac{3\sqrt{b}-\sqrt{ab}}{\sqrt{a}-3}\right)\left(1-\frac{b-2\sqrt{b}}{2-\sqrt{b}}\right)\)
a) tìm điều kiện của a và b để biểu thức A có nghĩa
b) rút gọn biểu thức A
1) Cho:
\(A=\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right).\left(1-\frac{3}{\sqrt{a}}\right)\)
a. Tìm điều kiện để A có nghĩa
b. Rút gọn A
c. Tìm a để \(A>\frac{1}{2}\)
2) Cho:
\(B=\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{a}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
a. Tìm điều kiện để B có nghĩa
b. Rút gọn B
\(A=\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\) \(đk:a>0;a\ne9\)
\(=\frac{\sqrt{a}+3+\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}.\frac{\sqrt{a}-3}{\sqrt{a}}\)
\(=\frac{2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+3\right)}\)
\(=\frac{2}{\sqrt{a}+3}\)
\(đk:a>0;a\ne9\)
\(A>\frac{1}{2}=>\frac{2}{\sqrt{a}+3}>\frac{1}{2}\)
\(=>4>\sqrt{a}+3\)
\(< =>\sqrt{a}>1\)
\(< =>a=1\)
Giúp em gấp ạ!
1. Cho B= \(\frac{\sqrt{b}}{\sqrt{b}+1}-\frac{\sqrt{b}}{\sqrt{b}-1}-\frac{2}{b-1}\)
a) tìm điều kiện
b) Rút gọn
c) Tìm b để B>1
2. Cho C= \(\left(1+\frac{c+\sqrt{c}}{\sqrt{c}+1}\right)\left(1-\frac{c-\sqrt{c}}{\sqrt{c}+1}\right)\)
Rút gọn
3. Cho A= \(\left(\frac{a-1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}-1}\right)\frac{\sqrt{a}+1}{\sqrt{a}+2}\)
a) tìm điều kiện
b)rút gọn
4. Cho A=\(\frac{1}{a+2\sqrt{a}}+\frac{1}{2-2\sqrt{a}}-\frac{a^2+1}{1-a^2}\)
a)Tìm điều kiện
b) rút gọn
c) tìm a để A<\(\frac{1}{3}\)