Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dovinh
Xem chi tiết
dovinh
Xem chi tiết
Akai Haruma
9 tháng 11 2019 lúc 9:53

Lời giải:
Dựa vào điều kiện $abc=1$ ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+ca+c}=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{1+ca+c}\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab+ab.ca+ab.c}\)

\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{ab+a+1}=\frac{1+a+ab}{ab+a+1}=1\)

Ta có đpcm.

Khách vãng lai đã xóa
Vũ Minh Tuấn
9 tháng 11 2019 lúc 11:15

Ta có: \(a.b.c=1\)

\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}\)

\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}\)

\(=\frac{1+ab+a}{1+ab+a}\)

\(=1.\)

\(\Rightarrow\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\left(đpcm\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
dovinh
Xem chi tiết
dovinh
Xem chi tiết
dovinh
Xem chi tiết
Le Anh Duc
Xem chi tiết
TH Truong Th
Xem chi tiết
Cristiano Ronaldo
Xem chi tiết
Nguyễn Anh Quân
30 tháng 11 2017 lúc 21:08

Có : 1/ab+a+1 = abc/ab+a+abc = bc/b+1+bc

1/abc+bc+b  = 1/1+bc+b

=> 1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = bc/bc+c+1 + b/bc+b+1 + 1/bc+b+1 = bc+b+1/bc+b+1 = 1

=> ĐPCM

k mk nha

Phạm Tuấn Đạt
30 tháng 11 2017 lúc 21:24

Có : 1/ab+a+1 = abc/ab+a+abc = bc/b+1+bc

1/abc+bc+b  = 1/1+bc+b

=> 1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = bc/bc+c+1 + b/bc+b+1 + 1/bc+b+1 = bc+b+1/bc+b+1 = 1

=> ĐPCM


 

Minh Châu
Xem chi tiết