4*x^4 +4*x^3 +5*x^2 +2*x+1
phân tích thành nhân tử
x^2+2x-4+1
phân tích thành nhân tử
\(\left(x+1\right)^2-2^2=\left(x-1\right)\left(x+3\right)\)
\(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)
Phân tích thành nhân tử:
`4(x-2)(x+1)+(2x-4)^2 +(x+1)^2`
`x^9 -x^7 -x^6 -x^5 +x^4 +x^3 +x^2 -1`
a: =4(x-2)(x+1)+4(x-2)^2+(x+1)^2
=(2x-4)^2+2*(2x-4)(x+1)+(x+1)^2
=(2x-4+x+1)^2=(3x-3)^2=9(x-1)^2
b: =x^7(x^2-1)-x^5(x+1)+x^3(x+1)+(x^2-1)
=(x+1)[x^7(x-1)-x^5+x^3+x-1]
=(x+1)[x^7(x-1)-x^3(x-1)(x+1)+(x-1)]
=(x+1)(x-1)(x^7-x^4-x^3+1)
=(x+1)(x-1)(x^3-1)(x^4-1)
=(x+1)(x-1)^2*(x^2+x+1)(x^2+1)(x-1)(x+1)
=(x+1)^2*(x-1)^3*(x^2+1)(x^2+x+1)
Phân tích thành nhân tử
1/ x^5+x^4-x^3+x^2-x+2
2/ x^4+ 5x^3+ 10x- 4
phân tích đa thức thành nhân tử : (x+3)^4+(x+5)^4-2
Đặt A=\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
\(=\left\lbrack\left(x+4\right)-1\right\rbrack^4+\left\lbrack\left(x+4\right)+1\right\rbrack^4-2\)
Đặt b=x+4
=>\(A=\left(b-1\right)^4+\left(b+1\right)^4-2\)
\(=\left(b^2-2b+1\right)^2+\left(b^2+2b+1\right)^2-2\)
\(=\left(b^2+1\right)^2-4b\left(b^2+1\right)+4b^2+\left(b^2+1\right)^2+4b\left(b^2+1\right)+4b^2-2\)
\(=2\left(b^2+1\right)^2+8b^2-2\)
\(=2\left\lbrack\left(b^2+1\right)^2+4b^2-1\right\rbrack\)
\(=2\cdot\left\lbrack b^4+2b^2+1+4b^2-1\right\rbrack=2\left(b^4+6b^2\right)=2b^2\left(b^2+6\right)\)
\(=2\left(x+4\right)^2\left\lbrack\left(x+4\right)^2+6\right\rbrack\)
phân tích đa thức thành nhân tử : (x+3)^4+(x+5)^4-2
Đặt A=\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
\(=\left\lbrack\left(x+4\right)-1\right\rbrack^4+\left\lbrack\left(x+4\right)+1\right\rbrack^4-2\)
Đặt b=x+4
=>\(A=\left(b-1\right)^4+\left(b+1\right)^4-2\)
\(=\left(b^2-2b+1\right)^2+\left(b^2+2b+1\right)^2-2\)
\(=\left(b^2+1\right)^2-4b\left(b^2+1\right)+4b^2+\left(b^2+1\right)^2+4b\left(b^2+1\right)+4b^2-2\)
\(=2\left(b^2+1\right)^2+8b^2-2\)
\(=2\left\lbrack\left(b^2+1\right)^2+4b^2-1\right\rbrack\)
\(=2\cdot\left\lbrack b^4+2b^2+1+4b^2-1\right\rbrack=2\left(b^4+6b^2\right)=2b^2\left(b^2+6\right)\)
\(=2\left(x+4\right)^2\left\lbrack\left(x+4\right)^2+6\right\rbrack\)
`x^5 + x^4 +x^3 +x^2 +x+1`
phân tích thành nhân tử
=x^3(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)(x^3+1)
=(x^2+x+1)(x+1)(x^2-x+1)
\(x^5+x^4+x^3+x^2+x+1\)
\(=\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)\)
\(=x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^4+x^2+1\right)\)
#Toru
phân tích thành nhân tử:(x+2)*(x+3)*(x+4)*(x+5)-24
(x+2).(x+3)(x+4)(x+5)-24
=(x+2)(x+5)(x+3)(x+4)-24
=(x2+7x+10)(x2+7x+12)-24
=(x2+7x+11-1)(x2+7x+11+1)-24
Đặt x2+7x+11=a thì
=(a-1)(a+1)-24
=a2-1-24=a2-25=a2-52
=(a+5)(a-5)
=(x2+7x+16)(x2+7x+6)
phân tích đa thức thành nhân tử :
(x + 2) (x + 3) (x + 4) (x + 5) - 24
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\\ =\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\\ =\left(x^2+7x+11\right)^2-1-24\\ =\left(x^2+7x+11\right)^2-25\\ =\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\\ =\left(x^2+7x+6\right)\left(x^2+7x+16\right)\\ =\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)+1-25\)
\(=\left(x^2+7x+11\right)^2-25=\left(x^2+7x+11+5\right)\left(x^2+7x+11-5\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
=[(x+2)(x+5)][(x+3)(x+4)]−24=(x2+7x+10)(x2+7x+12)−24=(x2+7x+11)2−1−24=(x2+7x+11)2−25=(x2+7x+11−5)(x2+7x+11+5)=(x2+7x+6)(x2+7x+16)=(x+1)(x+6)(x2+7x+16)
Phân tích thành nhân tử ( x+3) (x+2) (x+4) (x+5) -24
( x+3) (x+2) (x+4) (x+5) -24
=(x+3)(x+4)(x+2)(x+5)-24
=(x2+7x+12)(x2+7x+10)-24
Đặt t=x2+7x+10 ta được:
(t+2)t-24
=t2+2t-24
=t2+4t-6t-24
=t.(t+4)-6.(t+4)
=(t+4)(t-6)
thay t=x2+7t+10 ta được:
(x2+7x+14)(x2+7+4)
Vậy ( x+3) (x+2) (x+4) (x+5) -24=(x2+7x+14)(x2+7x+4)
ban ghep (x+3)(x+4) thanh 1 cap va (x+2)(x+5) roi dat t=x^2+7x+10 ta co t(t+2)-24=(t^2 +2t+1) -25=(t+1)^2 - 5^2=(t+6)(t-4) thay t la xong . giup mk lam bai mk dang vs nhe!