Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trúc Thanh
Xem chi tiết
Minh Anh Vũ
Xem chi tiết
Minh Nhân
8 tháng 7 2021 lúc 22:41

\(b.\)

\(=\sqrt{\left(3a\right)^2\cdot\left(b-2\right)^2}\)

\(=\left|3a\right|\cdot\left|b-2\right|\)

Với : \(a=2,b=-\sqrt{3}\)

\(2\cdot3\cdot\left(-\sqrt{3}-2\right)=6\cdot\left(-\sqrt{3}-2\right)\)

Minh Nhân
8 tháng 7 2021 lúc 22:39

\(a.\)

\(=\sqrt{4\cdot\left(3x+1\right)^2}=2\cdot\left|3x+1\right|\)

Với : \(x=-\sqrt{2}\)

\(2\cdot\left|3\cdot-\sqrt{2}+1\right|=2\cdot\left|1-\sqrt{6}\right|\)

 

Nguyễn Lê Phước Thịnh
8 tháng 7 2021 lúc 22:54

a) Ta có:\(\sqrt{4\left(9x^2+6x+1\right)^2}\)

\(=2\left(3x+1\right)^2\)

\(=2\cdot\left(-3\cdot\sqrt{2}+1\right)^2\)

\(=2\left(19-6\sqrt{2}\right)\)

\(=38-12\sqrt{2}\)

b) Ta có: \(\sqrt{9a^2\left(b^2-4b+4\right)}\)

\(=3\left|a\right|\left|b-2\right|\)

\(=3\cdot\left|2\right|\cdot\left|-\sqrt{3}-2\right|\)

\(=6\left(2+\sqrt{3}\right)=12+6\sqrt{3}\)

Nguyễn Khắc Quang
Xem chi tiết
Xyz OLM
9 tháng 2 2021 lúc 10:14

ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)

\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)

\(=\frac{8ab}{a^4b^4-16}\)

b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)

=> (a2 + 4).9 = a2(b2 + 9)

=> 9a2 + 36 = a2b2 + 9a2

=> a2b2 = 36

=> (ab)2 = 36

=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)

Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)

Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)

Khách vãng lai đã xóa
Vicky Lee
Xem chi tiết
Trần Thanh Phương
19 tháng 8 2019 lúc 15:33

a) \(\left|x\right|=2\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

+) TH1: \(x=2\)

\(A=\left(3\cdot2+5\right)\left(2\cdot2-1\right)+\left(4\cdot2-1\right)\left(3\cdot2+2\right)\)

\(A=89\)

+) TH2: \(x=-2\)

\(A=\left(-2\cdot3+5\right)\left(-2\cdot2-1\right)+\left(-2\cdot4-1\right)\left(-2\cdot3+2\right)\)

\(A=-27\)

Vậy...

Trần Thanh Phương
19 tháng 8 2019 lúc 15:34

b) \(B=9x^2+42x+49\)

\(B=\left(3x+7\right)^2\)

\(B=\left(3\cdot1+7\right)^2\)

\(B=100\)

Vậy...

Trần Thanh Phương
19 tháng 8 2019 lúc 15:35

c) \(C=25x^2-2xy+\frac{1}{25}y^2\)

\(C=\left(5x-\frac{1}{5}y\right)^2\)

\(C=\left(\frac{-1}{5}\cdot5-\frac{1}{5}\cdot\left(-5\right)\right)^2\)

\(C=0\)

Vậy...

Thùy Nguyễn
Xem chi tiết
Nguyễn Phương HÀ
29 tháng 6 2016 lúc 22:21

Hỏi đáp Toán

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2018 lúc 7:40

a) Rút gọn M = -6ab(-2b + a). Tính được M = 60.

b) Rút gọn M = 6xy – 7. Tính được N = -10.

Đinh Ngọc Anh
Xem chi tiết
Đào Lê Anh Thư
5 tháng 8 2017 lúc 21:59

\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)   ĐK đề bài

\(=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x+5\right)\left(x-5\right)}=\frac{-\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}=-\frac{1}{x-5}\)

b/ có A=-3 => \(-\frac{1}{x-5}=-3 \Rightarrow x-5=\frac{1}{3}\Rightarrow x=\frac{16}{3}\)

có \(9x^2-42x+49=\left(3x-7\right)^2=\left(\frac{3.16}{3}-7\right)^2=81\)

Lê Thùy Ánh
Xem chi tiết
Tran Le Khanh Linh
12 tháng 8 2020 lúc 16:27

\(4x^2-28x+49=\left(2x\right)^2-2\cdot2x\cdot7+7^2=\left(2x-7\right)^2\)

thay x=4 vào ta được \(\left(2\cdot4-7\right)^2=\left(8-7\right)^2=1^2=1\)

vậy \(4x^2-28x+49=1\)khi x=4

\(9x^2+42x+49=\left(3x\right)^2+2\cdot3x\cdot7+7^2=\left(3x+7\right)^2\)

thay x=1 và ta được \(\left(3\cdot1+7\right)^2=10^2=100\)

vậy \(9x^2+42x+49=100\)đạt được khi x=1

\(25x^2-2xy+\frac{1}{25y^2}=\left(5x\right)^2-2\cdot5x\cdot\frac{1}{5y}+\left(\frac{1}{5y}\right)^2=\left(5x-\frac{1}{5y}\right)^2\)

thay x=\(\frac{-1}{5}\)và y=-5 vào ta được \(\left[5\cdot\left(\frac{-1}{5}\right)-\frac{1}{5\cdot\left(-5\right)}\right]^2=\left(1-\frac{1}{-25}\right)^2=\left(\frac{26}{25}\right)^2=...\)

vậy \(25x^2-2xy+\frac{1}{25y^2}=\left(\frac{26}{25}\right)^2\)khi x=\(\frac{-1}{5}\)và y=-5

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
19 tháng 8 2020 lúc 7:47

4x2 - 28x + 49 = ( 2x )2 - 2.2x.7 + 72 = ( 2x - 7 )2

Thế x = 4 ta được : ( 2 . 4 - 7 )2 = 12 = 1

9x2 + 42x + 49 = ( 3x )2 + 2.3x.7 + 72 = ( 3x + 7 )2

Thế x = 1 ta được : ( 3.1 + 7 )2 = 102 = 100

25x2 - 2xy + 1/25y2 = ( 5x )2 - 2.5x.1/5y + ( 1/5y )2 = ( 5x - 1/5y )2

Thế x = -1/5 , y = -5 ta được : \(\left[5\cdot\left(-\frac{1}{5}\right)-\frac{1}{5}\cdot\left(-5\right)\right]^2=\left[-1+1\right]^2=0\)

Khách vãng lai đã xóa
Tạ Thị Thùy Trang
Xem chi tiết
Phạm Thị Thùy Linh
29 tháng 6 2019 lúc 18:53

Câu 1 :

\(a,\left(3x+2\right)^2=9x^2+12x+4.\)

\(b,\left(6a^2-b\right)^2=36a^4-12a^2b-b^2\)

\(c,\left(4x-1\right)\left(4x+1\right)=16x^2-1\)

\(d,\left(1-x\right)\left(1+x\right)\left(1+x^2\right)=\left(1-x^2\right)\left(1+x^2\right)=1-x^4\)

\(e,\left(a^2+b^2\right)\left(a^2-b^2\right)=a^4-b^4\)

\(f,\left(x^3+y^2\right)\left(x^3-y^2\right)=x^6-y^4\)

Phạm Thị Thùy Linh
29 tháng 6 2019 lúc 18:59

Bài 2 :

\(a,A=9x^2+42x+49=9+42+49=100.\)

\(b,B=25x^2-2xy+\frac{1}{25}y^2=\left(5x^2\right)-2.5x.\frac{1}{5}y+\left(\frac{1}{5}y\right)^2\)

\(=\left(5x-\frac{1}{5}y\right)^2=\left(-1+1\right)^2=0\)

\(c,C=4x^2-28x+49=4x^2-14x-14x+49\)

\(=2x\left(x-7\right)-7\left(x-7\right)=\left(2x-7\right)\left(x-7\right)\)

\(=\left(8-7\right)\left(4-7\right)=-3\)

Phạm Thị Thùy Linh
29 tháng 6 2019 lúc 19:02

Bài 3 :

\(a,\left(x-3\right)^2-4=0\)

\(\Rightarrow\left(x-3+2\right)\left(x-3-2\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-5\right)=0\)

\(\Rightarrow x\in\left\{1;5\right\}\)

\(b,x^2-2x=24\)

\(\Rightarrow x^2-2x-24=0\)

\(\Rightarrow x^2+4x-6x-24=0\)

\(\Rightarrow x\left(x+4\right)-6\left(x+4\right)=0\)

\(\Rightarrow\left(x+4\right)\left(x-6\right)=0\)

\(\Rightarrow x\in\left\{-4;6\right\}\)