A(x)=4x2+3x+2 chứng tỏ A(x)-3x+5 luôn dương với mọi x
Cho A(x)= 4x2 + 3x - 2
B(x)= 3x2 - 5
Chứng tỏ rằng A(x) - B(x) luôn dương với mọi x
Ta có: A(x) - B(x) = 4x^2 + 3x - 2 - 3x^2 + 5
= x^2 + 3x + 3
= x^2 + 3x + (3/2)^2 - (3/2)^2 + 5
= ( x + 3/2 )^2 + 11/4 \(\ge\)11/4
Vậy MinA = 11/4 <=> ( x + 3/2 )^2 = 0
<=> x = -3/2
Vậy ta có điều phải chứng minh
chứng minh
a) x2 + 2x +3 luôn dương với mọi x
b) x2 - 3x +5 luôn dương với mọi x
c) - x2 + 4x - 5 luôn âm với mọi x
d) -3x - 6x -7 luôn âm với mọi x
cho hai đa thứ a= x-3x^3+1+4x^2 và b= x-x^3-2022-2x^3 - 2x^2
tính c=a-b. chứng tỏ c luôn dương với mọi xC = A - B
= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)
= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²
= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)
= 6x² + 2023
Do x² ≥ 0 với mọi x
⇒ 6x² ≥ 0 với mọi x
⇒ 6x² + 2023 > 0 với mọi x
Vậy C luôn dương với mọi x
C = A - B
= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)
= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²
= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)
= 6x² + 2023
Do x² ≥ 0 với mọi x
⇒ 6x² ≥ 0 với mọi x
⇒ 6x² + 2023 > 0 với mọi x
Vậy C luôn dương với mọi x
Chứng tỏ rằng đa thức 11x² + 4x - 3x² - 4x + 5 luôn nhận giá trị dương với mọi x
\(\Leftrightarrow8x^2+5=0\)
do 8x^2 >0; 5>0
\(\Rightarrow8x^2+5>0\forall x\)
Chứng tỏ -3x +5 luôn dương vs mọi x
Cho các đa thức f(x)=4x2+3x-2
g(x)=3x2-2x+5
h(x)=x(5x-2)+3
a) tính giá trị của f(x) tại x=-1/2
b) tìm x để f(x)+g(x)-h(x)=0
c) chứng tỏ f(x)-3x+5 luôn dương với mọi x
a,Bạn có thể tự làm
b,Có f(x)+g(x)-h(x)=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=2x^2+3x=x(2x+3)
Để f(x)+g(x)-h(x)=0
thi x(2x+3)=0
suy ra x=0 hoặc x=-3/2
c,f(x)-3x+5=4x^2+3x-2-3x+5=4x^2+3>0 với mọi x
Chúc bạn học tốt!
a) \(f\left(x\right)=4x^2+3x-2\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\left(\frac{-1}{2}\right)^2+3.\frac{-1}{2}-2\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\frac{1}{4}+\frac{-3}{2}-\frac{4}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=1+\frac{-7}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{2}{2}+\frac{-7}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{-5}{2}\)
cho các đa thức:
F(x)= 4x2 + 3x - 2
G(x)= 3x2 - 2x + 5
H(x)= x( 5x-2 ) + 3
a) Tính giá trị của F(x) tại x = -1/2
b) Tìm x để F(x) + G(x) - H(x) = 0
c) Chứng tỏ rằng F(x) - 3x + 5 luôn dương với mọi x
Bài 1 tìm GTLN
(1-3x)(x+2)
Bài 2 Ct đa thức sau ko có nghiệm
A=x²+2x+7
Bài 3 Chứng tỏ rằng đa thức sau luôn dương vs mọi giá trị của biến
M=x²+2x+7
Bài 4 Chứng tỏ đa thức sau luôn ko dương vs mọi giá trị của biến
A=-x²+18x-81
Bài 5 Chứng tỏ các biểu thức sau luôn ko âm vs mọi giá trị của biến
F=-x²-4x-5
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
Chứng tỏ rằng đa thức:
a) A(x)= 5x3 +4x2 +7 -5x3 +x2 -2 luôn mang giá trị dương với mọi giá trị của x
b) B(x)= -5x2 +3x +7 +4x2 -3x -9 luôn mang giá trị âm với mọi giá trị của x
A(x) = 5x3 + 4x2 + 7 - 5x3 + x2 - 2
= 5x2 + 5
Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\Rightarrow5x^2+5\ge5>0\forall x\)
=> A(x) luôn dương với mọi x
B(x) = -5x2 + 3x + 7 + 4x2 - 3x - 9
= -x2 - 2
Ta có : \(x^2\ge0\forall x\Rightarrow-x^2\le0\Rightarrow-x^2-2\le-2< 0\forall x\)
=> B(x) luôn âm với mọi x
\(A\left(x\right)=\left(5x^3-5x^3\right)+\left(4x^2+x^2\right)+\left(7-2\right)=5x^2+5>0\)
\(B\left(x\right)=\left(-5x^2+4x^2\right)+\left(3x-3x\right)+\left(7-9\right)=-x^2-2< 0\)
a, \(A\left(x\right)=5x^3+4x^2+7-5x^3+x^2-2=5x^2+5\)
Ta có : \(\hept{\begin{cases}5x^2\ge0\\5>0\end{cases}}\)
Vậy A(x) luôn dương \(\forall x\)
b, \(B\left(x\right)=-5x^2+3x+7+4x^2-3x-9=-x^2-2\)
Ta có : \(\hept{\begin{cases}-x^2\ge0\\-2< 0\end{cases}}\)
Nên B(x) luôn âm \(\forall x\)