Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 12 2021 lúc 19:49

\(A=\dfrac{x^3+y^3+4}{xy+1}\ge\dfrac{x^3+y^3+4}{\dfrac{x^2+y^2}{2}+1}=\dfrac{x^3+y^3+4}{2}=\dfrac{\dfrac{1}{2}\left(x^3+x^3+1\right)+\dfrac{1}{2}\left(y^3+y^3+1\right)+3}{2}\)

\(\ge\dfrac{\dfrac{3}{2}\left(x^2+y^2\right)+3}{2}=3\)

\(A_{min}=3\) khi \(x=y=1\)

Do \(x^2+y^2=2\Rightarrow\left\{{}\begin{matrix}x\le\sqrt{2}\\y\le\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^3\le\sqrt{2}x^2\\y^3\le\sqrt{2}y^2\end{matrix}\right.\)

\(\Rightarrow A\le\dfrac{\sqrt{2}\left(x^2+y^2\right)+4}{xy+1}=\dfrac{4+2\sqrt{2}}{xy+1}\le\dfrac{4+2\sqrt{2}}{1}=4+2\sqrt{2}\)

\(A_{max}=4+2\sqrt{2}\) khi \(\left(x;y\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)

Trần Minh Hiếu
Xem chi tiết
Trần Tuấn Hoàng
13 tháng 5 2023 lúc 21:41

usechatgpt init success là gì vậy bạn :))?

\(x^2+y^2-xy=4\) \(\Rightarrow\dfrac{1}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x-y\right)^2=4\)

\(\Rightarrow P=8-\left(x-y\right)^2\le8\)

\(MaxP=8\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x-y=0\end{matrix}\right.\Leftrightarrow x=y=\pm2\)

\(x^2+y^2-xy=\dfrac{3}{2}\left(x^2+y^2\right)-\dfrac{1}{2}\left(x+y\right)^2\)

\(\Rightarrow4=\dfrac{3}{2}P-\dfrac{1}{2}\left(x+y\right)^2\)

\(\Rightarrow P=\dfrac{8+\left(x+y\right)^2}{3}\ge\dfrac{8}{3}\)

\(MinP=\dfrac{8}{3}\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{2\sqrt{3}}{3}\\y=\mp\dfrac{2\sqrt{3}}{3}\end{matrix}\right.\)

Akai Haruma
13 tháng 5 2023 lúc 21:47

Lời giải:

Tìm min:
Áp dụng BĐT AM-GM:
$x^2+y^2=4+xy\leq 4+|xy|\leq 4+\frac{x^2+y^2}{2}$

$\Rightarrow \frac{x^2+y^2}{2}\leq 4$

$\Rightarrow P=x^2+y^2\leq 8$

Vậy $P_{\max}=8$

---------------------------

$P=x^2+y^2=\frac{2}{3}(x^2-xy+y^2)+\frac{1}{3}(x^2+2xy+y^2)$

$=\frac{2}{3}.4+\frac{1}{3}(x+y)^2=\frac{8}{3}+\frac{1}{3}(x+y)^2\geq \frac{8}{3}$
Vậy $P_{\min}=\frac{8}{3}$

Người Vô Danh
Xem chi tiết
Trần Minh Hiếu
Xem chi tiết
Bảy việt Nguyễn
Xem chi tiết
Linh_Chi_chimte
Xem chi tiết
Lê Ngọc Diệp
Xem chi tiết
hiền nguyễn
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2023 lúc 20:57

Em kiểm tra đề là \(\dfrac{y^2}{4}\) hay \(\dfrac{y^4}{4}\)

Nếu đề đúng là \(\dfrac{y^4}{4}\) thì có thể coi như là không giải được

Nguyễn Việt Lâm
21 tháng 4 2023 lúc 22:15

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2-xy+\dfrac{y^2}{4}\right)+xy=2\)

\(\Leftrightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2+xy\ge xy\)

\(\Rightarrow P_{max}=2023\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;-2\right);\left(1;2\right)\)

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+xy+\dfrac{y^2}{4}\right)-xy=2\)

\(\Rightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x+\dfrac{y}{2}\right)^2-xy\ge-xy\)

\(\Rightarrow xy\ge-2\Rightarrow P\ge2019\)

\(P_{min}=2019\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x+\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;2\right);\left(1;-2\right)\)

An Vy
Xem chi tiết

A=x3+y3=(x+y)(x2-xy+y2)

=(x+y)2\(\ge\)0

Dấu "=" xảy ra khi x=-y