cho x^2 + y^2 - xy =4 Tìm min max A = x^2 + y^2
Cho x,y\(\ge0\); \(x^2+y^2=2\). Tìm min,max A=\(\dfrac{x^3+y^3+4}{xy+1}\)
\(A=\dfrac{x^3+y^3+4}{xy+1}\ge\dfrac{x^3+y^3+4}{\dfrac{x^2+y^2}{2}+1}=\dfrac{x^3+y^3+4}{2}=\dfrac{\dfrac{1}{2}\left(x^3+x^3+1\right)+\dfrac{1}{2}\left(y^3+y^3+1\right)+3}{2}\)
\(\ge\dfrac{\dfrac{3}{2}\left(x^2+y^2\right)+3}{2}=3\)
\(A_{min}=3\) khi \(x=y=1\)
Do \(x^2+y^2=2\Rightarrow\left\{{}\begin{matrix}x\le\sqrt{2}\\y\le\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^3\le\sqrt{2}x^2\\y^3\le\sqrt{2}y^2\end{matrix}\right.\)
\(\Rightarrow A\le\dfrac{\sqrt{2}\left(x^2+y^2\right)+4}{xy+1}=\dfrac{4+2\sqrt{2}}{xy+1}\le\dfrac{4+2\sqrt{2}}{1}=4+2\sqrt{2}\)
\(A_{max}=4+2\sqrt{2}\) khi \(\left(x;y\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)
Cho x, y thoả mãn \(x^2+y^2-xy=4\) . Tìm Max, Min \(P=x^2+y^2\)
usechatgpt init successusechatgpt init success là gì vậy bạn :))?
\(x^2+y^2-xy=4\) \(\Rightarrow\dfrac{1}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x-y\right)^2=4\)
\(\Rightarrow P=8-\left(x-y\right)^2\le8\)
\(MaxP=8\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x-y=0\end{matrix}\right.\Leftrightarrow x=y=\pm2\)
\(x^2+y^2-xy=\dfrac{3}{2}\left(x^2+y^2\right)-\dfrac{1}{2}\left(x+y\right)^2\)
\(\Rightarrow4=\dfrac{3}{2}P-\dfrac{1}{2}\left(x+y\right)^2\)
\(\Rightarrow P=\dfrac{8+\left(x+y\right)^2}{3}\ge\dfrac{8}{3}\)
\(MinP=\dfrac{8}{3}\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{2\sqrt{3}}{3}\\y=\mp\dfrac{2\sqrt{3}}{3}\end{matrix}\right.\)
Lời giải:
Tìm min:
Áp dụng BĐT AM-GM:
$x^2+y^2=4+xy\leq 4+|xy|\leq 4+\frac{x^2+y^2}{2}$
$\Rightarrow \frac{x^2+y^2}{2}\leq 4$
$\Rightarrow P=x^2+y^2\leq 8$
Vậy $P_{\max}=8$
---------------------------
$P=x^2+y^2=\frac{2}{3}(x^2-xy+y^2)+\frac{1}{3}(x^2+2xy+y^2)$
$=\frac{2}{3}.4+\frac{1}{3}(x+y)^2=\frac{8}{3}+\frac{1}{3}(x+y)^2\geq \frac{8}{3}$
Vậy $P_{\min}=\frac{8}{3}$
cho 2 số thức thỏa mãn : \(x^2+y^2-xy=4\)
tìm Min và Max của P = \(x^2+y^2\)
Cho \(x,y\in R\) thoả mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\) .
Tìm MAX, MIN \(P=xy\)
1. cho x^2+y^2=1. tìm Min Max x+y
2. cho xy=1 x>y. tìm min (x^2+y^2)/(x-y)
Cho x,y sao cho \(x^2+y^2-xy=4\)
Tìm Min A, Max A, biết A=\(x^2+y^2\)
Tìm Min và Max của A=x^2+y^2 biết x,y là 2 số thực thỏa mãn x^2+y^2-xy=4
Cho \(x,y\ne0\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^4}{4}=4\) .
Tìm MIN, MAX của : P= \(xy+2021\)
Em kiểm tra đề là \(\dfrac{y^2}{4}\) hay \(\dfrac{y^4}{4}\)
Nếu đề đúng là \(\dfrac{y^4}{4}\) thì có thể coi như là không giải được
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2-xy+\dfrac{y^2}{4}\right)+xy=2\)
\(\Leftrightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2+xy\ge xy\)
\(\Rightarrow P_{max}=2023\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;-2\right);\left(1;2\right)\)
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+xy+\dfrac{y^2}{4}\right)-xy=2\)
\(\Rightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x+\dfrac{y}{2}\right)^2-xy\ge-xy\)
\(\Rightarrow xy\ge-2\Rightarrow P\ge2019\)
\(P_{min}=2019\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x+\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;2\right);\left(1;-2\right)\)
Cho x;y thuộc R và x^2 + y^2 -xy=x+y Tìm min max A = x^3 + y^3
A=x3+y3=(x+y)(x2-xy+y2)
=(x+y)2\(\ge\)0
Dấu "=" xảy ra khi x=-y