Tìm Min và Max của A=x^2+y^2 biết x,y là 2 số thực thỏa mãn x^2+y^2-xy=4
Cho x,y là hai số không âm thỏa mãn: x+y=2. Tìm Min và Max của biểu thức:
P= \(\sqrt{x^2+y^2}+\sqrt{xy}\)
Cho \(x,y\ne0\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^4}{4}=4\) .
Tìm MIN, MAX của : P= \(xy+2021\)
cho các số thực x,y thỏa mãn \(2\left(x^2+y^2\right)=1+xy\)
tìm MAX và MIN của biểu thức: \(P=7\left(x^4+y^4\right)+4x^2y^2\)
cho 2 số x,y thỏa mãn \(x+y\le2\) và \(x^2+y^2+xy=3\). Tìm min và max của \(T=x^2+y^2-xy\)
cho x , y là 2 số thực thỏa mãn
\(x^2+y^2-xy=4\)
tìm min max của
\(x^4+y^4-x^2y^2\)
Cho các số thực x, y thỏa mãn: \(x^2+y^2+xy-6\left(x+y\right)+11=0\)
Tìm min và max của P = 2x + y
cho x,y thuộc R Thỏa mãn x^2.y^2 +2y+1=0 , tìm max, min p=xy / 3y+1
cho x , y thuộc R thỏa mãn \(x^2+y^2+xy=1\)
tìm min , max của \(P=2x^2-xy+7y^2\)