usechatgpt init success là gì vậy bạn :))?
\(x^2+y^2-xy=4\) \(\Rightarrow\dfrac{1}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x-y\right)^2=4\)
\(\Rightarrow P=8-\left(x-y\right)^2\le8\)
\(MaxP=8\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x-y=0\end{matrix}\right.\Leftrightarrow x=y=\pm2\)
\(x^2+y^2-xy=\dfrac{3}{2}\left(x^2+y^2\right)-\dfrac{1}{2}\left(x+y\right)^2\)
\(\Rightarrow4=\dfrac{3}{2}P-\dfrac{1}{2}\left(x+y\right)^2\)
\(\Rightarrow P=\dfrac{8+\left(x+y\right)^2}{3}\ge\dfrac{8}{3}\)
\(MinP=\dfrac{8}{3}\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=4\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{2\sqrt{3}}{3}\\y=\mp\dfrac{2\sqrt{3}}{3}\end{matrix}\right.\)
Lời giải:
Tìm min:
Áp dụng BĐT AM-GM:
$x^2+y^2=4+xy\leq 4+|xy|\leq 4+\frac{x^2+y^2}{2}$
$\Rightarrow \frac{x^2+y^2}{2}\leq 4$
$\Rightarrow P=x^2+y^2\leq 8$
Vậy $P_{\max}=8$
---------------------------
$P=x^2+y^2=\frac{2}{3}(x^2-xy+y^2)+\frac{1}{3}(x^2+2xy+y^2)$
$=\frac{2}{3}.4+\frac{1}{3}(x+y)^2=\frac{8}{3}+\frac{1}{3}(x+y)^2\geq \frac{8}{3}$
Vậy $P_{\min}=\frac{8}{3}$