Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Khang Trung
Xem chi tiết
thùy nguyễn
Xem chi tiết
Mai Khang Trung
Xem chi tiết
Dương Tuấn Linh
Xem chi tiết
Gia Linh
Xem chi tiết
Trần Đức Huy
4 tháng 2 2022 lúc 8:59

a) thay m=-1 ta được

\(\left\{{}\begin{matrix}x+y=0\\-x-y=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x+y=0\\x+y=0\end{matrix}\right.\)

=> hpt vô nghiệm

b)hpt trên có vô số nghiệm <=>\(\dfrac{1}{m}=\dfrac{-m}{-1}=\dfrac{0}{m+1}\)(vô lí)

   hpt trên chỉ có nghiệm duy nhất<=>\(\dfrac{1}{m}\ne\dfrac{-m}{-1}\)

                                                     <=>\(\dfrac{1}{m}\ne\dfrac{m}{1}\)

                                                     <=>\(m^2\ne1< =>m\ne\pm1\left(đpcm\right)\)

 

taekook
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 21:19

Hệ \(\Leftrightarrow\left\{{}\begin{matrix}x=3m-my\\mx-y=m^2-2\end{matrix}\right.\)

\(\Rightarrow m\left(3m-my\right)-y=m^2-2\)

\(\Leftrightarrow2m^2+2=y\left(1+m^2\right)\)

\(\Leftrightarrow y=\dfrac{2m^2+2}{1+m^2}=2\)

\(\Rightarrow x=3m-2m=m\)

Có \(x^2-2x-y>0\Leftrightarrow m^2-2m-2>0\)

\(\Leftrightarrow\left(m-1-\sqrt{3}\right)\left(m-1+\sqrt{3}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1+\sqrt{3}\\m< 1-\sqrt{3}\end{matrix}\right.\)

Vậy...

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 3 2017 lúc 6:21

Ta có:  D = m − 1 3 m = m 2 + 3 ;   D x = 2 − 1 5 m = 2 m + 5 ;   D y = m 2 3 5 = 5 m − 6

Vì m 2 + 3 ≠ 0 ,   ∀ m nên hệ phương trình luôn có nghiệm duy nhất  x = D x D = 2 m + 5 m 2 + 3 y = D y D = 5 m − 6 m 2 + 3

Theo giả thiết, ta có:

x + y < 1 ⇔ 2 m + 5 m 2 + 3 + 5 m − 6 m 2 + 3 < 1 ⇔ 7 m − 1 m 2 + 3 < 1

⇔ 7 m − 1 < m 2 + 3 ⇔ m 2 − 7 m + 4 > 0 ⇔ m > 7 + 33 2 m < 7 − 33 2

Đáp án cần chọn là: A

Lizy
Xem chi tiết
Akai Haruma
13 tháng 1 lúc 13:15

Lời giải:

$x+my=2\Rightarrow x=2-my$. Thay vào PT(2):

$m(2-my)-2y=1$

$\Leftrightarrow 2m-y(m^2+2)=1$

$\Leftrightarrow y=\frac{2m-1}{m^2+2}$

$x=2-my=2-\frac{2m^2-m}{m^2+2}=\frac{m+4}{m^2+2}$

Vậy hpt có nghiệm $(x,y)=(\frac{m+4}{m^2+2}; \frac{2m-1}{m^2+2})$

Để $x<0; y>0$

$\Leftrightarrow \frac{m+4}{m^2+2}<0$ và $\frac{2m-1}{m^2+2}>0$

$\Leftrightarrow m+4<0$ và $2m-1>0$ (do $m^2+2>0$)

$\Leftrightarrow m< -4$ và $m> \frac{1}{2}$  (vô lý)

Do đó không tồn tại $m$ thỏa mãn đề.

Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 21:39

Hệ có nghiệm duy nhất khi: \(\dfrac{1}{m}\ne\dfrac{m}{-2}\Rightarrow m^2\ne-2\) (luôn đúng)

\(\Rightarrow\) Hệ luôn có nghiệm duy nhất với mọi m

Khi đó: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+2my=4\\m^2x-2my=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+2\right)x=m+4\\y=\dfrac{mx-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{4m-2}{2\left(m^2+2\right)}\end{matrix}\right.\)

Nghiệm hệ thỏa mãn x<0, y<0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}< 0\\\dfrac{4m-2}{2\left(m^2+2\right)}< 0\end{matrix}\right.\) (1)

Do \(m^2+2>0;\forall m\) nên (1) tương đương:

\(\left\{{}\begin{matrix}m+4< 0\\4m-2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow m< -4\)