Cho hình bình hành ABCD có M, N là trung điểm AB, CD. Chứng minh AC, MN, BD đồng quy.
Cho hình bình hành ABCD có AB=2BC. Gọi M và N là Trung điểm của AB, CD. a) chứng minh rằng AMND là hình thoi. b)chứng minh rằng MBND là hình bình hành. C) chứng minh rằng AC, BD, MN đồng quy
Cho hình bình hành ABCD có M,N là trung điểm của AB và CD,AN và CM cắt BD ở E và F.
a)Chứng minh AMCN là hình bình hành
b)Chứng minh AC;MN;EF đồng quy
Cho hình bình hành ABCD có AB=2BC. Gọi M và N là Trung điểm của AB, CD.
a) chứng minh rằng AMND là hình thoi.
b)chứng minh rằng MBND là hình bình hành.
C) chứng minh rằng AC, BD, MN đồng quy
Bài 4: (3,5 điểm) Cho hình bình hành ABCD (AB > BC) có M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh: AMCN là hình bình hành
b) Chứng minh: AC, BD, MN đồng quy
c) Gọi E là giao của AD và MC. Chứng minh: AM là đường trung bình của ΔECD
a) Ta có : AB // CD ( do ABCD là hình bình hành )
\(\Rightarrow\)AM // NC \(\left(1\right)\)
Lại có : M là trung điểm của AB \(\Rightarrow AM=\frac{1}{2}AB\left(2\right)\)
N là trung điểm của DC \(\Rightarrow CN=\frac{1}{2}CD\left(3\right)\)
mà AB = CD ( ABCD là hình bình hành ) \(\left(4\right)\)
Từ \(\left(2\right);\left(3\right);\left(4\right)\Rightarrow AM=CN\left(5\right)\)
Từ \(\left(1\right);\left(5\right)\Rightarrow\)tứ giác AMCN là hình bình hành
b) Ta có : ABCD là hình bình hành (gt)
\(\Rightarrow\)AC cắt BD tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của BD và O là trung điểm của AC (*)
Ta có : AMCN là hình bình hành (cma)
\(\Rightarrow\)AC cắt MN tại trung điểm của mỗi đường
\(\Rightarrow\)O là trụng điểm của MN (**)
Từ (*) ; (**) \(\Rightarrow\)AC ; BD ; MN đồng quy
c) Ta có : AM = CN (cmt)
mà \(CN=\frac{1}{2}DC\)(cmt)
\(\Rightarrow AM=\frac{1}{2}DC\)
\(\Rightarrow\)AM là đường trung bình của \(\Delta ECD\)
Cho hình bình hành ABCD (AB > BC) có M, N lần lượt là trung điểm của AB vàCD. a) Tứ giác AMCN là hình gì? Vì sao? b) Chứng minh: AC, BD, MN đồng quy
Cho hình bình hành ABCD,gọi E là trung điểm AB,F là trung điểm của CD,chứng minh AECF là hình bình hành.gọi M là giao điểm của AF và BD.N là giao điểm CE và BD,chứng minh: +,DM+MN=NB +,chứng minh:AC,BD,EF đồng quy
Ta có:
tam giác AEB = tam giác CFD
=> \(\widehat{AEB}=\widehat{CFD}=\widehat{EDF}\left(slt\right)\)
mà 2 goác có vị trí đồng vị
=> EB//DF
Mặt khác: ED//BF
=> EBFD là h.b.h
Ta có:
Tam giác END= tam giác FMB
=> DN=BM
=> DN+MN=BM+MN=BN
Ta có:
Vì tứ giác ABCD và EBFC đều là h.b.h
=> AC, BD, EF đồng quy tại trung điểm của EF
cho hình bình hành ABCD (AB>BC) có M,N lần lượt là trung điểm của AB và CD
a) chứng minh AMCN là hình bình hành
b) chứng minh AC BD MN đồng quy
c) gọi E là giao điểm của AD và MC.Chứng minh AM là đường trung bình của tam giác ECD
Mọi người ơi giúp mình với ạ !!!
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Bài 5. Cho tứ giác ABCD không là hình bình hành. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các đoạn thẳng AB, CD, AD, BC, AC, BD. Chứng minh rằng MN, PQ, RS đồng quy
Cho hình bình hành ABCD (AB > AD), phân giác góc A cắt cạnh CD tại M, phân giác góc C cắt cạnh AB tại N.
a) Chứng minh tứ giác AMCN là hình bình hành.
b) Gọi E là trung điểm AB, F là trung điểm CD, chứng minh rằng AC, MN, EF và BD đồng quy.
c) Đường chéo DB cắt AF, EC lần lượt tại I, K chứng minh DI = IK = KB.
Cho hình bình hành ABCD, M là trung điểm AB, N là trung điểm CD.
a. CM tứ giác AMND là hình bình hành.
b. CM Tứ giác AMCN là hình bình hành.
c. CM AC,BD, MN đồng quy.
Bài 2 : Cho hình thang cân ABCD ( AB // CD ). Gọi M,N,P ,Q lần lượt là trung điểm Ab,CD,AD,CA. Biết AC vuông góc với BD.
a. CM tứ giác MNPQ là hình bình hành.
b. CM tứ giác MNPQ là hình thoi.