Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần thị ngọc trâm
Xem chi tiết
Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

mai
Xem chi tiết
Hoài Thu Vũ
Xem chi tiết
Phương Linh
Xem chi tiết
Tạ Duy Phương
20 tháng 10 2015 lúc 22:30

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

huong nguyen
Xem chi tiết
Võ Văn Kiệt
Xem chi tiết
Akai Haruma
28 tháng 1 lúc 20:13

Lời giải:
ĐKXĐ: $x\geq 0$

Ta thấy: $\sqrt{x}\geq 0; 2x+1>0$ với mọi $x\geq 0$

$\Rightarrow \frac{\sqrt{x}}{2x+1}\geq 0$

Vậy GTNN của biểu thức là $0$. Giá trị này đạt được khi $x=0$

:333
Xem chi tiết
Trần Minh Hoàng
30 tháng 5 2021 lúc 10:45

Đặt \(P=\dfrac{2x^2+x}{\left(x+1\right)^2}\Rightarrow P+\dfrac{1}{4}=\dfrac{9x^2+6x+1}{4\left(x+1\right)^2}=\dfrac{\left(3x+1\right)^2}{4\left(x+1\right)^2}\ge0\).

Dấu "=" xảy ra khi và chỉ khi \(x=-\dfrac{1}{3}\).

Vậy..

Trần Đoàn Đức Trí
Xem chi tiết
Nguyễn Minh Đăng
10 tháng 10 2020 lúc 21:54

Ta có: \(A=\left|2x-1\right|+5\ge5\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|2x-1\right|=0\Rightarrow x=\frac{1}{2}\)

Vậy Min(A) = 5 khi x = 1/2

Khách vãng lai đã xóa