B1.Cho pt x^2-4x-m^2+3=0.Tìm m để pt có 2no x1,x2 thỏa mãn x1^2+3x1x2=10x2^2
B1.Tìm các gt của m để pt:
x^2 - 2mx+m-2=0
Có 2no ple x1 x2 thỏa mãn M=\(\frac{2x1x2-\left(x1+x2\right)}{x1^2+x2^2-6x1x2}\)đạt GTNN
B2.Cho pt x^2-4x-m^2+3=0.Tìm m để pt có 2no x1,x2 thỏa mãn x1^2+3x1x2=10x2^2
B3.Tìm các gtrị của k để x^2 -(k-3)x-k+6=0.Có 1no dương duy nhất
B4.Cho pt : x^2+4x-3m+1=0.Tìm m để:
a)Pt có đúng 1no âm
b)Pt có 2no x1<x2<2
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
B1.Tìm các gt của m để pt:
x^2 - 2mx+m-2=0
Có 2no ple x1 x2 thỏa mãn M=\(\frac{2x1x2-\left(x1+x2\right)}{x1^2+x2^2-6x1x2}\)đạt GTNN
B2.Cho pt x^2-4x-m^2+3=0.Tìm m để pt có 2no x1,x2 thỏa mãn x1^2+3x1x2=10x2^2
B3.Tìm các gtrị của k để x^2 -(k-3)x-k+6=0.Có 1no dương duy nhất
B4.Cho pt : x^2+4x-3m+1=0.Tìm m để:
a)Pt có đúng 1no âm
b)Pt có 2no x1<x2<2
cho pt: x^2-2(m-3)x+3m^2-8m+5=0.Tìm m để pt có hai nghiệm x1,x2 thỏa mãn x1^2+2x^2-3x1x2=x1-x2
Cho pt : x^2 - 2mx + m^2 - m = 0 (1) ( m là tham số ). Tìm các giá trị của tham số m để pt (1) có 2 nghiệm phân biệt x1,x2 thỏa mãn x1^2 + x2^2 = 4 - 3x1x2
Δ=(-2m)^2-4(m^2-m)
=4m^2-4m^2+4m=4m
Để (1) có 2 nghiệm phân biệt thì 4m>0
=>m>0
x1^2+x2^2=4-3x1x2
=>(x1+x2)^2-2x1x2=4-3x1x2
=>(2m)^2+m^2-m=4
=>4m^2+m^2-m-4=0
=>5m^2-m-4=0
=>5m^2-5m+4m-4=0
=>(m-1)(5m+4)=0
=>m=1 hoặc m=-4/5(loại)
B1.Cho pt : x^2+4x-3m+1=0.Tìm m để:
a)Pt có đúng 1no âm
b)Pt có 2no x1<x2<2
\(x^2+4x-3m+1=0\)
Để (1) có 2 nghiệm phân biệt x1, x2 thì \(\Delta'=2^2-\left(3m+1\right)=-3m+3>0\)\(\Leftrightarrow\)\(m< 1\)
a) pt (1) có 1 nghiệm âm => nghiệm còn lại dương => 2 nghiệm trái dấu => \(x_1x_2< 0\)
Vi-et: \(x_1x_2=1-3m< 0\)\(\Leftrightarrow\)\(m< \frac{1}{3}\)
b) pt có 2 nghiệm phân biệt \(\hept{\begin{cases}x_1=-2-\sqrt{3-3m}\\x_1=-2+\sqrt{3-3m}\end{cases}}\)
Dễ thấy \(x_1< x_2\) nên ta cần tìm m để \(x_2=-2+\sqrt{3-3m}< 2\)
\(\Leftrightarrow\)\(\sqrt{3-3m}< 4\)\(\Leftrightarrow\)\(m>\frac{-13}{3}\)
Cho pt xã -4x4 m=0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức 2x1 + x2 = 1 Cho pt: 2x2 3x-2m +3 = 0 ("). Tìm m để phương trình (") có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1/x2 + xz/x1 =3 Cho pt xã 4x - m + 3 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức x1-x2=7 Giải gấp chi tiết giúp e vs ạ
Cho phương trình: x^2 + 4x + m + 1 = 0. Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn pt \(\dfrac{x1}{x2}+\dfrac{x2}{x1}=\dfrac{10}{3}\)
PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`
Viet: `x_1+x_2=-4`
`x_1 x_2=m+1`
`(x_1)/(x_2)+(x_2)/(x_1)=10/3`
`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`
`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`
`<=> (4^2-2(m+1))/(m+1)=10/3`
`<=> m=2` (TM)
Vậy `m=2`.
\(x^2+2x-m^2-3=0 \)
a. cmr : ptr luôn có 2 no phân biệt x1, x2 với m tùy ý
b. tìm m để pt có 2no phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x1}+\dfrac{1}{x2}=3\)
a: a*c=-m^2-3<=-3<0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
b: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)
=>\(\dfrac{x_2+x_1}{x_2x_1}=3\)
=>\(\dfrac{-2}{-m^2-3}=3\)
=>\(\dfrac{2}{m^2+3}=3\)
=>m^2+3=2/3
=>m^2=2/3-3=-7/3(vô lý)
cho pt: x^2 - 4x + m = 0(m là tham số) b) Tìm m để pt có nghiệm x1, x2 thỏa mãn: 1/x1^2 + 1/x2^3 = 2