tam giác ABC cân tại A , vẽ các đường cao BE,CD . Qua B kẻ đường thẳng song song với CD . Cắt AC tại E . Chứng minh : AC^2 = AE.AF
Cho tam giác abc cân tại a , vẽ các đường cao BE và CD . Từ B vẽ 1 đường thẳng song song với CD cắt AC tại F
C/m : \(AC^2\) = AE.AF
Cho tam giác ABC cân tại A. Kẻ phân giác CD. Qua D vẽ đường thẳng vuông góc với CD, cắt BC tại F và cắt CA tại K. Đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh rằng
c,CF= 2 BD
d) MD= 1 phần 4 CF
Thách ai làm được(ko copy)
Cho tam giác ABC cân A . Kẻ phân giác CD (D∈ AB ) . Qua D vẽ đường thẳng vuông góc với CD , cắt BC tại F và CA tại K . Đường thẳng kẻ qua D và song song với BC cắt AC tại E . Phân giác của góc BAC cắt DE tại M . chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau. b) Các tam giác DEC và DEK là các tam giác cân. c) CF BD = 2 . d) MD=1/4 CF .
Cho tam giác ABC cân tại A. Kẻ phân giác CD ( D không thuộc AB). Qua D vẽ đường thẳng vuông góc với CD, cắt BC tại F và cắt CA tại K. Đường thẳng kẻ qua D và song song với BC cắt AC tại E. Phân giác của góc BAC cắt DE tại M. Chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau
GIÚP MIK ĐI GẤP QUÁ
Cho tam giác ABC cân tại A có hai đường phân giác BE và CD (E thuộc AC, D thuộc AB)
a) Chứng minh góc EBC=góc DCB và tam giác DBC= tam giác ECB
b) Qua E vẽ đường thẳng song song với CD cắt tia BC tại điểm F. Chứng minh tam giác BEF cân tại E
c) Chứng minh tam giác DCE= tam giác FEC và BC+DE<2BE.
Giúp mình nha cảm ơn ,mai mình phải nộp bài rồi!
a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
Xét ΔDBC và ΔECB có
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đo: ΔDBC=ΔECB
b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)
nên ΔBEF cân tại E
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu: \(AC^2=4BE.HE\) thì tam giác ABC là tam giác cân
Ta có: AEH=90⁰.
=>HAE+AHE=90⁰.(1)
Ta có: ∆BHD vuông tại D.
=>DBH+BHD=90⁰.(2)
Từ (1) và (2) suy ra: HAE+AHE=DBH+BHD=90⁰.
Mà: AHE=DBH (2 góc đối đỉnh).
=> HAE=DBH.
=>HAE=DBE.
=>∆HEA~CBE(g.g).
=>AE/BE=HE/CE.
=>BE.HE=AE.CE.=>4BE.HE=4AE.CE.=>4BE.HE=AC².
=> (AE+CE)²=4AE.CE.
=>(AE-CE)²=0.
=>AE=CE
=> E là trung điểm của AC
=> BE là đường trung tuyến của ∆ABC
Mà: BE là đường cao của ∆ABC.
=> ∆ABC cân tại B.
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu \(AC^2=4BE.HE\) thì tam giác ABC là tam giác cân
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu\(AC^2=4BE.HE\)thì tam giác ABC là tam giác cân