Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lil Học Giỏi
Xem chi tiết
Nguyễn Nam
13 tháng 7 2019 lúc 22:22

ghi đề đầy đủ đi, không hiểu gì hết

Nguyễn Thị Khánh Ngọc
Xem chi tiết
Phạm Lan Hương
18 tháng 2 2020 lúc 9:15

ta có: góc ACD= góc ABD (vì cùng chắn cung AD nhỏ)

xét tam giác ACG và tam giác DBG có:

góc AGC =góc DGB (2 góc đối đỉnh)

góc ACG= góc DBG (cmt)

=> tam giác AGC ~ tam giác DGB(g-g)

=>\(\frac{AG}{AC}=\frac{DG}{DB}\) \(\Rightarrow\frac{AG}{DG}=\frac{CG}{BG}\)(1)

ta có GM là phân giác góc AGD => \(\frac{AG}{GD}=\frac{AM}{MD}\left(2\right)\)

Ta có: góc CGB = góc AGD (2 góc đối đỉnh)

mà MN là phân giác góc AGD

=> MN là phân giác gócCGB

hay GN là phân giác góc CGB

=> \(\frac{CG}{BG}=\frac{CN}{BN}\)(3)

từ (1);(2) và (3) ta có \(\frac{AM}{MD}=\frac{CN}{NB}\left(đpcm\right)\)

Khách vãng lai đã xóa
Bắc Hoàng
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Phạm My
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 14:58

a: Xet ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

b: ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//CD

c: Xét tứ giác ABCE có

N là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//EC

=>C,E,D thẳng hàng

Đậu Hoàng Chương
Xem chi tiết
Nguyễn Ngọc Anh Minh
3 tháng 5 2022 lúc 7:39

a/

\(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\) (Pitago)

b/

Ta có

\(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5cm\) (Trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.\dfrac{5}{2}=\dfrac{5}{3}cm\)  (trong tg 3 đường trung tuyến đồng quy tại 1 điểm và điểm đó cách đỉnh 1 khoảng bằng 2/3 độ dài đường trung tuyến mà trung tuyến đó đi qua)

c/

Xét tg ABN và tg CDN có

AN=CN (gt); BN=DN (gt)

\(\widehat{ANB}=\widehat{CND}\) (Góc đối đỉnh)

=> tg ABN=tg CDN (c.g.c)=> \(\widehat{BAN}=\widehat{DCN}=90^o\Rightarrow CD\perp AC\)

NAM NGUYỄN
Xem chi tiết
Phùng khánh my
29 tháng 11 2023 lúc 12:30

a) Để chứng minh ABDC là hình chữ nhật, ta cần chứng minh rằng các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- AM là trung tuyến của tam giác ABC, nên AM = MC.

- AM = MD (theo giả thiết), nên MD = MC.

- AH là đường cao của tam giác ABC, nên góc AMH = 90 độ.

 

Vậy ta có AM = MC, MD = MC và góc AMH = 90 độ.

 

Từ đó, ta có thể kết luận rằng ABDC là hình chữ nhật với các cạnh đối diện bằng nhau và các góc trong bằng 90 độ.

 

b) Để chứng minh AEHF là hình vuông, ta cần chứng minh rằng các cạnh của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- AE là chân đường vuông góc từ H xuống AB, nên góc AEH = 90 độ.

- AF là chân đường vuông góc từ H xuống AC, nên góc AFH = 90 độ.

- AH là đường cao của tam giác ABC, nên góc AMH = 90 độ.

 

Vậy ta có góc AEH = góc AFH = góc AMH = 90 độ.

 

Từ đó, ta có thể kết luận rằng AEHF là hình vuông với các cạnh bằng nhau và các góc trong bằng 90 độ.

 

c) Để chứng minh EF vuông góc với AM, ta cần chứng minh rằng góc giữa EF và AM bằng 90 độ.

 

Ta có:

- AE là chân đường vuông góc từ H xuống AB, nên góc AEH = 90 độ.

- AF là chân đường vuông góc từ H xuống AC, nên góc AFH = 90 độ.

 

Vậy ta có góc AEH = góc AFH = 90 độ.

 

Do đó, EF song song với AB (do AE và AF là các đường vuông góc với AB và AC), và vì AM là trung tuyến của tam giác ABC, nên EF vuông góc với AM.

 

Từ đó, ta có thể kết luận rằng EF vuông góc với AM.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 7 2019 lúc 5:24

Trần Ngọc Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 22:44

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao