ta có: góc ACD= góc ABD (vì cùng chắn cung AD nhỏ)
xét tam giác ACG và tam giác DBG có:
góc AGC =góc DGB (2 góc đối đỉnh)
góc ACG= góc DBG (cmt)
=> tam giác AGC ~ tam giác DGB(g-g)
=>\(\frac{AG}{AC}=\frac{DG}{DB}\) \(\Rightarrow\frac{AG}{DG}=\frac{CG}{BG}\)(1)
ta có GM là phân giác góc AGD => \(\frac{AG}{GD}=\frac{AM}{MD}\left(2\right)\)
Ta có: góc CGB = góc AGD (2 góc đối đỉnh)
mà MN là phân giác góc AGD
=> MN là phân giác gócCGB
hay GN là phân giác góc CGB
=> \(\frac{CG}{BG}=\frac{CN}{BN}\)(3)
từ (1);(2) và (3) ta có \(\frac{AM}{MD}=\frac{CN}{NB}\left(đpcm\right)\)