Cho a + b = 2. Chứng minh rằng:
\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)
Giúp mình với!!!
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
Với các số dương a, b, c sao cho \(ab^2+bc^2+ca^2\) , chứng minh rằng:
\(\sqrt[3]{a+7}+\sqrt[3]{b+7}+\sqrt[3]{c+7}\le2\left(a^4+b^4+c^4\right)\)
Bổ dung thêm \(ab^2+bc^2+ca^2=3\)
Áp dụng BĐT Cauchy ba số:
\(\left(a+7\right)+8+8\ge3\sqrt[3]{\left(a+7\right)8\cdot8}=12\sqrt[3]{a+7}\)
\(\Rightarrow\sqrt[3]{a+7}\le\frac{a+23}{12}\)
Tương tự ta có: \(\hept{\begin{cases}\sqrt[3]{b+7}\le\frac{b+23}{12}\\\sqrt[3]{c+7}\le\frac{c+23}{12}\end{cases}}\)
Cộng các BĐT trên ta nhận được:
\(\sqrt[3]{a+7}+\sqrt[3]{b+7}+\sqrt[3]{c+7}\le\frac{a+b+c+69}{12}\)
Áp dụng BĐT Cauchy 4 số:
\(a\le\frac{a^4+1+1+1}{4}=\frac{a^4+3}{4};b\le\frac{b^4+3}{4};c\le\frac{c^4+3}{4}\)
\(\Rightarrow\frac{a+b+c+69}{12}\le\frac{\frac{a^4+3}{4}+\frac{b^4+3}{4}+\frac{c^4+3}{4}+69}{12}=\frac{a^4+b^4+c^4+285}{48}\)
Ta chứng minh \(\frac{a^4+b^4+c^4+285}{48}\le2\left(a^4+b^4+c^4\right)\)
Áp dụng BĐT Cauchy 4 số: \(\hept{\begin{cases}a^4+b^4+b^4+1\ge4ab\\b^4+c^4+c^4+1\ge4bc^2\\c^4+a^4+a^4+1\ge4ca^2\end{cases}}\)
Cộng các BĐT trên ta thu được \(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=12\)
\(\Leftrightarrow a^4+b^4+c^4\ge3\)
=> đpcm
Cho a,b,c là các số dương thỏa mãn a+b+c=4.Chứng minh rằng:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
Bạn nào biết giúp mình với
Ta có:
\(a+b+c=4\)
\(\Rightarrow\) \(a< 4\)
\(\Rightarrow\) \(a^4< 4a^3\) (do \(a>0\) nên \(a^3>0\) )
Do đó, \(a^3>\frac{a^4}{4}\) hay nói cách khác, \(\sqrt[4]{a^3}>\sqrt[4]{\frac{a^4}{4}}=\frac{a}{\sqrt[4]{4}}\) \(\left(1\right)\)
Từ đó, ta cũng tương tự thiết lập được: \(\sqrt[4]{b^3}>\frac{b}{\sqrt[4]{4}}\) \(\left(2\right)\) và \(\sqrt[4]{c^3}>\frac{c}{\sqrt[4]{4}}\) \(\left(3\right)\)
Cộng từng vế các bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) ta có:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)
Bài 1: Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sqrt{\frac{a+b+4c}{a+b}}+\sqrt{\frac{b+c+4a}{b+c}}+\sqrt{\frac{c+a+4b}{c+a}}\ge3\sqrt{3}.\)
Bài 2:Cho các số thực dương a,b,c thoả mãn abc=1. Chứng minh rằng:
\(\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}+\sqrt[3]{\left(\frac{2b}{bc+1}\right)^2}+\sqrt[3]{\left(\frac{2c}{ca+1}\right)^2}\ge3.\)
Giúp mình với! Mình cần gấp.
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
Bài 1:
Với a, b, c là các số thực dương, chứng minh rằng: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Bài 2:
Với x, y là các số thực dương, tìm giá trị nhỏ nhất của \(G=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
Bài 3:
Với a, b, c là các số thực dương, chứng minh rằng: \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\right)\)
Bài 4:
Với a, b, c là các số thực dương thỏa mãn abc = 1, chứng minh rằng: \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
Cho a, b, c là các số thực dương thoả mãn \(a^2+b^2+c^2+abc=4\)
Chứng minh rằng: \(b+c\le2\sqrt{2-a}\)
Cho các số dương a,b. Chứng minh rằng:
\(\left(\sqrt{a}+\sqrt{b}\right)\cdot\left(\frac{1}{\sqrt{a+3b}}+\frac{1}{\sqrt{b+3a}}\right)\le2\)
Chứng minh rằng:
\(\sqrt{a\left(3b+c\right)}+\sqrt{b\left(3c+a\right)}+\sqrt{c\left(3a+b\right)}\le2\left(a+b+c\right)\) với a,b,c dương
\(\sqrt{a\left(3b+c\right)}+\sqrt{b\left(3c+a\right)}+\sqrt{c\left(3a+b\right)}=\dfrac{\sqrt{4a\left(3b+c\right)}=\sqrt{4b\left(3c+a\right)}+\sqrt{4c\left(3a+b\right)}}{2}\le\dfrac{\left(4a+3b+c\right)+\left(4b+3c+a\right)+\left(4c+3a+b\right)}{4}\)\(=\dfrac{8\left(a+b+c\right)}{4}=2\left(a+b+c\right)\)
Dấu "=" xảy ra <=> a = b = c
Theo BĐT Cô - Si ta có :
\(\left\{{}\begin{matrix}\sqrt{a\left(3b+c\right)}\le\dfrac{a+3b+c}{2}\\\sqrt{b\left(3c+a\right)}\le\dfrac{b+3c+a}{2}\\\sqrt{c\left(3a+b\right)}\le\dfrac{c+3a+b}{2}\end{matrix}\right.\)
Cộng từng vế của BĐT ta được :
\(\sqrt{a\left(3b+c\right)}+\sqrt{b\left(3c+a\right)}+\sqrt{c\left(3a+b\right)}\le\dfrac{5\left(a+b+c\right)}{2}=2,5\left(a+b+c\right)\)
Chịu @@
áp dụng bất đẳng thức \(Bunhiacopxki\) ta có :
\(\sqrt{a\left(3b+c\right)}+\sqrt{b\left(3c+a\right)}+\sqrt{c\left(3a+b\right)}\le\sqrt{\left(a+b+c\right)\left(4a+4b+4c\right)}\)
\(=2\left(a+b+c\right)\left(đpcm\right)\)
dấu "=" xảy ra khi \(a=b=c\)
Cho \(a,b,c,d>0,a+b+c+d=1\). Chứng minh \(\sqrt{a+b+c}+\sqrt{b+c+d}+\sqrt{a+c+d}+\sqrt{a+b+d}\le2\sqrt{3}\)
Đặt 4 căn thức lần lượt là \(\left(x;y;z;t\right)\)
\(\Rightarrow x^2+y^2+z^2+t^2=3\)
Ta cần chứng minh: \(x+y+z+t\le2\sqrt{3}\)
Áp dụng BĐT Bunhiacopxki:
\(\left(x+y+z+t\right)^2\le\left(1+1+1+1\right)\left(x^2+y^2+z^2+t^2\right)=12\)
\(\Rightarrow x+y+z+t\le2\sqrt{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{1}{4}\)
P/s: việc đặt chỉ để viết cho ngắn, còn thực chất bạn áp dụng luôn Buniacopxki cho 1 dòng cũng được