Bài 1: Một thửa ruộng hcn có chu vi 250m. Tính diện tích thửa ruộng biết rằng chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi thửa ruộng không đổi .
Giải toán bằng cách lập phương trình hoặc hệ phương trình
Một thửa ruộng HCN có chu vi 250m. Tính diện tích của thửa ruộng biết rằng nếu chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi của thửa ruộng ko thay đổi.
Gọi \(x\left(m\right)\) là chiều dài hình chữ nhật \(\left(0< x< 250\right)\)
Nửa chu vi là : \(250:2=125\left(m\right)\)
\(125-x\) là chiều rộng hình chữ nhật
Theo đề, ta có pt :
\([\left(x-3\right)+\left(125-x\right).2].2=250\)
\(\Leftrightarrow x-3+250-2x=125\)
\(\Leftrightarrow-x=-122\)
\(\Leftrightarrow x=122\left(tmdk\right)\)
Chiều dài là \(122m\)
Chiều rộng là \(125-122=3m\)
Diện tích thửa ruộng là \(122.3=366m^2\)
Một thửa ruộng HCN có chu vi 250m. Tìm chiều dài và chiều rộng của thửa ruộng biết rằng khi ta giảm chiều dài 3 lần và chiều rộng tăng 2 lần thì chu vi của thửa ruộng không đổi.
Theo đề, ta có:
\(\left\{{}\begin{matrix}2a+2b=250\\\dfrac{1}{3}a+2b=125\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{3}a=125\\a+b=125\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=75\\b=50\end{matrix}\right.\)
gọi chiều dài thửa ruộng là x (m) ( x > 0 )
chiều rộng....................y (m) (y>0)
theo bài ra ta có hệ phương trình : \(\hept{\begin{cases}2x+2y=250\\\left(\frac{x}{3}+2y\right).2=250\end{cases}}\)
=> x = 75 , y = 50
Gọi chiều dài là a;chiều rộng là b (\(a,b\in N\)*; a<b)
Nửa chu vi thửa ruộng là:
250:2=125m
\(\Rightarrow a+b=125\left(1\right)\)
Nếu chiều dài giảm 3 lần và chiều rộng tăng 2 lần thì chu vi của thửa ruộng vẫn không đổi
\(\Rightarrow\left[\left(a-3\right)+\left(b+2\right)\right]\times2=\left(a+b\right)\times2\left(2\right)\)
Từ (1) và (2) ta có hệ... nhưng vô nghiệm ko bít tui sai hay đề sai :D
Huy Thắng: Rất tiếc là em sai :))) Đề đúng :)) Vì ở đây đề bài cho chiều dài GIẢM 3 LẦN chứ không phải giảm 3m :))) Đọc kĩ đề bài nhé ^^
Bạn Nghĩa làm đúng nhé ^^
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có; a+b=125 và a/3+2b=125
=>a=75; b=50
1 thửa ruộng hcn có chu vi là 250m tính diện tíc thửa ruộng biết rằng chiều dài giảm 3 lần và chiều rộng tăng thêm 2 lần thì chu vi thửa ruộng ko that đoiỉ
vì chiều rộng tăng 3 lần và chiều dài gấp 2 lần thì thửa ruộng không thay đổi suy ra chiều dài gấp số lần chiều rộng là
3:2=3/2{lần}
Nửa chu vi là 250:2=125{m}
{sơ đồ bạn tự vẽ}
Chiều dài là 125:{3+2}x3=75{m}
Chiều rộng là 125-75=50 {m}
Diện h là 75x50=3750{m2}
Đ/S3750m2
Một thửa ruộng hình chữ nhật có chu vi 300m. Tính diện tích của thửa ruộng biết nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi thửa ruộng không đổi.
gọi chiều dài là a, chiều rộng là b, ta có
\(\hept{\begin{cases}\left(a+b\right)x2=300\\\left(\frac{a}{2}+3b\right)2=300\end{cases}}\)
=> \(\hept{\begin{cases}a=120\left(m\right)\\b=30\left(m\right)\end{cases}}\)
=> diện tích hình chữ nhật là: 120x30=3600(m2)
Nửa chu vi thửa ruộng : 300 : 2 = 150m
Gọi x(m) là chiều dài thửa ruộng ( 0 < x < 150 )
=> Chiều rộng thửa ruộng = 150 - x (m)
Giảm chiều dài 2 lần => Chiều dài mới = 1/2x (m)
Tăng chiều rộng 3 lần => Chiều rộng mới = 3( 150 - x ) = 450 - 3x
Khi đó chu vi thửa ruộng không đổi
=> Ta có phương trình : 1/2x + 450 - 3x = 150
<=> -5/2x = -300 <=> x = 120 (tm)
Vậy chiều dài thửa ruộng là 120m , chiều rộng thửa ruộng là 30m
Diện tích thửa ruộng = 120.30 = 3600m2
Một thửa ruộng hình chữ nhật có chu vi 300m. Tính diện tích của thửa ruộng biết nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi thửa ruộng không đổi.
Nửa chu vi thửa ruộng : 300 : 2 = 150m
Gọi x(m) là chiều dài thửa ruộng ( 0 < x < 150 )
=> Chiều rộng thửa ruộng = 150 - x (m)
Giảm chiều dài 2 lần => Chiều dài mới = 1/2x (m)
Tăng chiều rộng 3 lần => Chiều rộng mới = 3( 150 - x ) = 450 - 3x
Khi đó chu vi thửa ruộng không đổi
=> Ta có phương trình : 1/2x + 450 - 3x = 150
<=> -5/2x = -300 <=> x = 120 (tm)
Vậy chiều dài thửa ruộng là 120m , chiều rộng thửa ruộng là 30m
Diện tích thửa ruộng = 120.30 = 3600m2
Một thửa ruộng có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích thửa ruộng biết rằng nếu giảm chiều dài đi 2 lần và tăng chiều rộng 3 lần thì chu vi không thay đổi.
Gọi chiều rộng thửa ruộng là x mét (với x>0)
Chiều dài thửa ruộng là: \(x+45\) (m)
Chu vi thửa ruộng ban đầu: \(2\left(x+x+45\right)=4x+90\)
Chiều rộng lúc sau: \(3x\)
Chiều dài lúc sau: \(\dfrac{x+45}{2}\)
Chu vi thửa ruộng lúc sau: \(2\left(3x+\dfrac{x+45}{2}\right)=7x+45\)
Do chu vi thửa ruộng ko đổi nên ta có pt:
\(4x+90=7x+45\)
\(\Rightarrow x=15\)
Chiều dài thửa ruộng ban đầu: \(15+45=60\left(m\right)\)
Diện tích: \(15.60=900\left(m^2\right)\)
Một thửa ruộng hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích thửa ruộng, biết rằng nếu chiều dài giảm đi 2 lần và chiều rộng tăng 3 lần thì chu vi thửa ruộng không thay đổi.
Giải theo tiểu học vì bài này là chương trình lớp 5.
Giảm dài 2 lần mà tăng rộng 3 lần mà chu vi không đổi có nghĩa là phần tăng và giảm là bằng nhau.
giảm dài 2 lần tức là mất đi 1/2 chiều dài. Rộng tăng 3 lần có nghĩa là chiều rộng thêm 2 lần của nó nửa. Vậy 1/2 chiều dài bằng 2 lần chiều rộng hay chiều dài bằng 4 lần chiều rộng.
Giải theo dạng tìm hai số khi biết hiệu và tỷ của nó.
Chiều rộng là: 45:(4-1)x 1= 15m và chiều dài là 15+45=60m
Diện tích: 60x15= 900m2