Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Zye Đặng
Xem chi tiết
Akai Haruma
4 tháng 8 2018 lúc 18:13

Lời giải:

Ta thấy: \(27309\equiv 2\pmod 7\)

\(\Rightarrow A\equiv 2^{10}+2^{20}+2^{30}+...+2^{100}\pmod 7\)

Lại có:

\(2^3\equiv 1\pmod 7\)

\(\Rightarrow 2^{10}=(2^3)^3.2\equiv 1^3.2\equiv 2\pmod 7\)

\(\Rightarrow \left\{\begin{matrix} 2^{20}\equiv 2^2\pmod 7\\ 2^{30}\equiv 2^3\pmod 7\\ ......\\ 2^{100}\equiv 2^{10}\pmod 7\end{matrix}\right.\)

Do đó: \(A\equiv 2+2^2+..+2^{10}\pmod 7\)

\(A\equiv 2(1+2+2^2)+2^4(1+2+2^2)+2^7(1+2+2^2)+2^{10}\pmod 7\)

\(A\equiv 2.7+2^4.7+2^7.7+2^{10}\pmod 7\)

\(A\equiv 2^{10}\equiv 2\pmod 7\)

Vậy $A$ chia $7$ dư $2$

Ngọc Huyền
Xem chi tiết
Hung nguyen
27 tháng 3 2017 lúc 13:57

Ta có: \(2730\equiv0\left(mod7\right)\Rightarrow1730^{10}\equiv0\left(mod7\right)\left(1\right)\)

\(927309\equiv5\left(mod7\right)\)

\(\Rightarrow927309^{10^2}\equiv5^{10^2}\left(mod7\right)\)

\(5^6\equiv1\left(mod7\right)\)

\(\Rightarrow5^{100}=5^{96}.5^4\equiv5^4\equiv2\left(mod7\right)\)

\(\Rightarrow927309^{10^2}\equiv2\left(mod7\right)\left(2\right)\)

Ta lại có: \(27309\equiv2\left(mod7\right)\)

\(\Rightarrow27309^{10^n}\equiv2^{10^n}\left(mod7\right)\)

\(2^{10^n}=2.2^{10^n-1}\equiv2\left(mod7\right)\left(3\right)\)

Từ (1), (2), (3) ta có

\(A=\left(2730^{10}+927309^{10^2}+27309^{10^3}+...+27309^{10^{10}}\right)\equiv\left(0+2+2+...+2\right)\equiv18\equiv4\left(mod7\right)\)

Vậy số dư của A cho 7 là 4

Nguyễn Hải Nam
Xem chi tiết
khócVô lệ
20 tháng 8 2016 lúc 13:21

Đặt A=1010+10102+...+10102015A=1010+10102+...+10102015

Dễ thấy 1010≡4(mod7)1010≡4(mod7)

Nên A≡4+410+4102+...+4102014A≡4+410+4102+...+4102014

Dễ chứng minh được 410≡4(mod7)410≡4(mod7)

Nên 410≡4102≡...≡4102015≡4(mod7)410≡4102≡...≡4102015≡4(mod7)

Do đó A≡4.2015≡3(mod7)A≡4.2015≡3(mod7)

Hoàng Thúy Hằng
Xem chi tiết
Phi Long Nguyễn
21 tháng 2 2015 lúc 17:11

ta có 10 đồng dư với 3 mod 7

=> 10^2 đồng dư với 2 mod 7

=> 10^4 đồng dư với 4 mod 7

=> 10^5 đồng dư với 5 mod 7

=> 10^10 đồng dư với 3 mod 7

=> 10^20 đồng dư với 2 mod 7

=> 10^30 đồng dư với 6 mod 7

........

tự làm tiếp nhá

Vanheoshing
1 tháng 4 2019 lúc 20:16

khó Wa 

ko bít làm

hiiiiiiiiiii

soryy

Ai là bạn cùng lớp tôi t...
Xem chi tiết
Ai là bạn cùng lớp tôi t...
6 tháng 4 2016 lúc 19:33

64489123=1654

654d8g321vb5

1654j865u4

18947l94k8i=15h1l

Ai là bạn cùng lớp tôi t...
7 tháng 4 2016 lúc 12:23

15648x54647vf=vc54v98d

15648x54647vf=vc54v98d

15648x54647vf=vc54v98d

15648x54647vf=vc54v98d

Kaneki Ken
Xem chi tiết
Ta Vu Dang Khoa
21 tháng 10 2015 lúc 20:24

Bn an vao chu xanh Tìm dư trong phép chia : A= 10^10+ 10^10^2+ 10^10^3 +... + 10^10^10 cho 7

Etherious Natsu Dragneel
Xem chi tiết
Super Saiya
4 tháng 4 2016 lúc 21:08

sdsds

chinh
Xem chi tiết
Sarah
24 tháng 7 2016 lúc 6:45

A = 2 + 2 +  2+....+ 299​

   = (2 + 22 + 23) + .... + (297 + 298 + 299)

   = 2.(1 + 2 + 4) + .... + 297.(1 + 2 + 4)

   = 2.7 + ..... + 297.7

   = 7.(2 + .... + 297) chia hết cho 7

đỗ ngọc ánh
24 tháng 7 2016 lúc 8:58

A=2+22+23+...+299

A=2(1+2+4)+23(1+2+4)+25(1+2+4)+...+297(1+2+4)

A=2.7+23.7+25.7+...+297.7

A=7(2+23+25+27+...+297)

nên biều thức trên chia hết cho 7

A=2+22+23+...+299

A=2(1+2+4+8+16)+25(1+2+4+8+16)+....+295(1+2+4+8+16)

A=2.31+25.31+...+295.31

A=31(2+25+...+295)

vậy A chia hết cho 31 nên số dư của 31 chia A là 0

Đinh Ngọc Phong
24 tháng 7 2016 lúc 11:01

chang hay the ma b h nhu m ch

Admin'ss Thịnh's
Xem chi tiết
Ly Ly
24 tháng 3 2017 lúc 12:35

ta có A = 1! + 2! + 3! + ... + 2015!

           = (...0)