Tìm x , biết : (nâng cao)
C) 3x+4+ 3x+2= 810
D)3x+ 3x+2= 810
Bài 2: Tìm x, biết:
a/ 12x(x – 5) – 3x(4x - 10) = 120
b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)
c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)
$ a/ 12x(x – 5) – 3x(4x - 10) = 120$
`<=>12x^2-60x-12x^2+30x=120`
`<=>-30x=120`
`<=>x=-4`
Vậy `x=-4`
$b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)$
`<=>9x^2+36x-15x^2-10x=112-6x^2-2x`
`<=>-6x^2+26x=112-6x^2-2x`
`<=>28x=112`
`<=>x=4`
Vậy `x=4`
$c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)$
`<=>3x-3x^2-15x^2-35x=154+45x-18x^2`
`<=>-32x-18x^2=154+45x-18x^2`
`<=>77x=-154`
`<=>x=-2`
Vậy `x=-2`
Tìm x , y , z biết :
a) 3x = 2y ; 7y = 5z và x - y + z = 32
b) 3x = 2y ; 5y = 7z và 3x + 5y - 7z = 42
c) 5x = 2y ; 2x = 3z và x . y = 90
d)2x = 3y = 5z và x + y - z = 95
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
d, \(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)
Tìm x, biết : a) |4 + 2x | = -4 b) |3x - 1| +2 = x c) |x + 15| + 1 = 3x
\(a,\Rightarrow x\in\varnothing\left(\left|4+2x\right|\ge0>-4\right)\\ b,\Rightarrow\left|3x-1\right|=x-2\\ \Rightarrow\left[{}\begin{matrix}3x-1=x-2\left(x\ge\dfrac{1}{3}\right)\\3x-1=2-x\left(x< \dfrac{1}{3}\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(ktm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Rightarrow x\in\varnothing\\ c,\Rightarrow\left|x+15\right|=3x-1\\ \Rightarrow\left[{}\begin{matrix}x+15=3x-1\left(x\ge-15\right)\\x+15=1-3x\left(x< -15\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\left(tm\right)\\x=-\dfrac{7}{2}\left(ktm\right)\end{matrix}\right.\\ \Rightarrow x=8\)
tìm x thuộc Z biết :
a)|3x+5|-2(x+7)-4(7-x)=|3x+5|+2x
b)|x^2-4|+(x-2)^2=0
c)|x+7|+|x+5|+|x+3|=2x
d)|3x+5|=5-3x
Tìm x biết a) 3x^2+x)4-3x)=12 b)3x^2-2x-1=0
b: \(3x^2-2x-1=0\)
=>\(3x^2-3x+x-1=0\)
=>\(\left(x-1\right)\left(3x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
a: Bạn ghi lại đề đi bạn
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
tìm x biết
a/x^3+3x^2+3x+2=0
b/x^4-2x^3+2x-1=0
c/x^4-3x^3-6x^2+8x=0
a) \(x^3+3x^2+3x+2=0\)
<=> \(x^3+x^2+x+2x^2+2x+2=0\)
<=> \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)
<=> \(\left(x+2\right)\left(x^2+x+1\right)=0\)
tự làm
b) \(x^4-2x^3+2x-1=0\)
<=> \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)
<=> \(\left(x-1\right)^3\left(x+1\right)=0\)
tự làm
c) \(x^4-3x^3-6x^2+8x=0\)
<=> \(x\left(x^3-3x^2-6x+8\right)=0\)
<=> \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)
<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)
<=> \(x\left(x-4\right)\left(x^2+x-2\right)=0\)
<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)
tự làm
Tìm các số x,y,z , biết :
a) 3x=2y; 7y=5z; x-y+z= 32
b) x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
c) x/2=y/3=z/5 và xyz=810
a) 3x = 2y \(\Rightarrow\)\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\Rightarrow\frac{y}{15}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x+y+z}{10+15+21}=\frac{32}{46}=\frac{2}{3}\)
\(\hept{\begin{cases}x=10.\frac{2}{3}=\frac{20}{3}\\y=15.\frac{2}{3}=10\\z=21.\frac{2}{3}=14\end{cases}}\)
Vậy \(\hept{\begin{cases}x=10.\frac{2}{3}=\frac{20}{3}\\y=15.\frac{2}{3}=10\\z=21.\frac{2}{3}=14\end{cases}}\)
tìm x biết (3x + 4)^2 - ( 3x -1).(3x+1)
\(\left(3x+4\right)^2-\left(3x-1\right)\left(3x+1\right)=9x^2+24x+16-9x^2+1=24x+17\)
Đặt \(24x+17=0\Leftrightarrow x=-\frac{17}{24}\)
1) Tìm x,biết :
a) 3/2 . |x-5/3| - 4/5 = 4/3 . |x-5/3| + 1
b) 2.|3x +1| = 1/3 . |3x + 1| +5
c) 1/4 - 5/2 . | 3x - 1/5| = 2/3. |3x - 1/5| - 2/3
a) 3/2.|x - 5/3| - 4/5 = 4/3.|x - 5/3| + 1
<=> 3/2.|x - 5/3| = 4/3.|x - 5/3| + 1 + 4/5
<=> 3/2.|x - 5/3| = 9/5 + 4|x - 5/3|/3
<=> 3/2.|x - 5/3| - 4.|x - 5/3|/3 = 9/5
<=> |x - 5/3|/6 = 9/5
<=> |x - 5/3| = 9/5.6
<=> |x - 5/3| = 54/5
<=> x - 5/3 = 54/5 hoặc x - 5/3 = -54/5
x = 54/5 + 5/3 x = -54/5 - 5/3
x = 187/15 x = -137/15
b) 2.|3x + 1| = 1/3.|3x + 1| + 5
<=> 2.|3x + 1| - 1/3.|3x + 1| = 5
<=> 5/3.|3x + 1| = 5
<=> 5.|3x + 1| = 5.3
<=> 5.|3x + 1| = 15
<=> |3x + 1| = 15 : 5
<=> |3x + 1| = 3
3x + 1 = 3 hoặc 3x + 1 = -3
3x = 3 - 1 3x = -3 - 1
3x = 2 3x = -4
x = 2/3 x = -4/3
=> x = 2/3 hoặc x = -4/3
c) làm tương tự câu a) mình hơi lời
Làm câu c) cho
\(\frac{1}{4}-\frac{5}{2}\left|3x-\frac{1}{5}\right|=\frac{2}{3}\left|3x-\frac{1}{5}\right|-\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{4}+\frac{2}{3}=\frac{2}{3}\left|3x-\frac{1}{5}\right|+\frac{5}{2}\left|3x-\frac{1}{5}\right|\)
\(\Leftrightarrow\frac{3}{12}+\frac{8}{12}=\left|3x-\frac{1}{5}\right|\left(\frac{2}{3}+\frac{5}{2}\right)\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|\left(\frac{4}{6}+\frac{15}{6}\right)=\frac{11}{12}\)
\(\Leftrightarrow\frac{19}{6}\left|3x-\frac{1}{5}\right|=\frac{11}{12}\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|=\frac{11}{12}.\frac{6}{19}\)
\(\Leftrightarrow\left|3x-\frac{1}{5}\right|=\frac{11}{38}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{1}{5}=\frac{11}{38}\\3x-\frac{1}{5}=-\frac{11}{38}\end{cases}}\)
Giải tiếp nha