Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thapkinhi
Xem chi tiết
Akai Haruma
18 tháng 7 2024 lúc 23:49

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

Akai Haruma
18 tháng 7 2024 lúc 23:50

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Akai Haruma
18 tháng 7 2024 lúc 23:51

3.

Giả sử $a,a+b$ không phải 2 số nguyên tố cùng nhau. Khi đó, đặt $d=ƯCLN(a,a+b)$. Điều kiện: $d\geq 2$.

$\Rightarrow a\vdots d; a+b\vdots d$
$\Rightarrow (a+b)-a\vdots d$

$\Rightarrow b\vdots d$

Vậy $a\vdots d; b\vdots d\Rightarrow d=ƯC(a,b)$. Mà $d\geq 2$ nên $a,b$ không phải 2 số nguyên tố cùng nhau (trái với đề bài) 

Vậy điều giả sử là sai. Tức là $a,a+b$ là 2 số nguyên tố cùng nhau.

Big City Boy
Xem chi tiết
Akai Haruma
30 tháng 11 2023 lúc 23:03

Lời giải:

$A=\frac{2}{3}+\frac{4}{3^2}+\frac{6}{3^3}+...+\frac{2n}{3^n}$

$3A=2+\frac{4}{3}+\frac{6}{3^2}+....+\frac{2n}{3^{n-1}}$

$3A-A=2+\frac{2}{3}+\frac{2}{3^2}+....+\frac{2}{3^{n-1}}-\frac{2n}{3^n}$

$2A=2+\frac{2}{3}+\frac{2}{3^2}+....+\frac{2}{3^{n-1}}-\frac{2n}{3^n}$

$A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}-\frac{n}{3^n}$

$3A=3+1+\frac{1}{3}+....+\frac{1}{3^{n-2}}-\frac{n}{3^{n-1}}$

$3A-A=3-\frac{1}{3^{n-1}}-\frac{n}{3^{n-1}}+\frac{n}{3^n}$

$2A=3-\frac{n+1}{3^{n-1}}+\frac{n}{3^n}$

$2A=\frac{3^{n+1}-2n-3}{3^n}$

$A=\frac{3.3^n-2n-3}{2.3^n}$

$\Rightarrow a=3; b=1; c=2\Rightarrow abc=6$

TrầnHoàngGiang
Xem chi tiết
Lê Song Phương
16 tháng 9 2023 lúc 21:00

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

TrầnHoàngGiang
Xem chi tiết
Akai Haruma
16 tháng 9 2023 lúc 23:21

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

pham dung
Xem chi tiết
pham dung
15 tháng 11 2017 lúc 21:47

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều

Hoàng Thị Yến Nhi
Xem chi tiết
Hoàng Thị Yến Nhi
5 tháng 12 2019 lúc 19:02

mình làm ơn đấy, trả lời giúp mình đi!!!!!!

help me please, I will repay you!!!!!!

Khách vãng lai đã xóa
Hoàng Thị Yến Nhi
8 tháng 12 2019 lúc 9:04

you just help me, I will repay you everywhere!!!!!!

Khách vãng lai đã xóa
Nguyễn Quốc Minh
4 tháng 10 2021 lúc 20:40

nhiều thế 

Khách vãng lai đã xóa
Lê Quốc Lâm
Xem chi tiết
Akai Haruma
30 tháng 6 2024 lúc 18:35

Lời giải:

Gọi $d=ƯCLN(12n+1, 30n+2)$
$\Rightarrow 12n+1\vdots d; 30n+2\vdots d$

$\Rightarrow 5(12n+1)-2(30n+2)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

$\Rightarrow ƯCLN(12n+1, 30n+2)=1$

$\Rightarrow 12n+1, 30n+2$ là hai số nguyên tố cùng nhau.

Nguyễn Xuân Đình Lực
Xem chi tiết
ngân
4 tháng 7 2020 lúc 21:19

mk chưa học đến lớp 9 

xin lỗi bn nha

Khách vãng lai đã xóa
ILoveMath
Xem chi tiết
Triệu Hoa Vi
Xem chi tiết