Tìm Min của A=\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) với : x>0 , y>0 , x+y<1
Cho x,y>0 và x+y=1 Tìm Min
A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
Ta có: \(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{2xy}+8xy\right)-4xy\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+2\sqrt{\frac{1}{2xy}.8xy}-\left(x+y\right)^2=4+4-1=7\)
Dấu "=" xảy ra khi và chỉ khi x = y = 0,5.
2.Cho x,y>0 thỏa mãn x+y=1.Tìm min của A=\(\frac{1}{x^2+y^2}\)+\(\frac{2}{xy}\) +4xy
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+2+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)
A = \(\frac{7}{2}\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)-\frac{5}{2\left(x^2+y^2\right)}\)
Áp dụng bđt cauchy là ra bài
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Cho x,y >0 và x+y<_1
Tìm Min A=\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{\left(x+y\right)^2}\)
\(\ge4+2+5=11\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Vậy..
Tìm GTNN của:
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\text{ với }x>0;y>0\text{ và }x+y<1\)
Điểm rơi: \(x=y=\frac{1}{2}.\)
\(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)
\(\ge\frac{1}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(=\frac{1}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge2+\frac{6}{1^2}=8\)
1, Cho x > 0, y > 0, x + y \(\le\)1
Tìm MinA = \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
2, Tìm Min và max của P = \(\frac{x^2+1}{x^2-x+1}\)
3, Cho (x + y)2 + 7(x + y) +y2 + 10 = 0
Tìm min, Max của P = x + y + 1
4, Cho x > 0, y > 0 và x + y \(\le\)1
CMR : \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\)
1.
Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)
Dấu "=" khi a = b.
Áp dụng:
\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)
\(=4+2+5=11\)
Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)
\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)
\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)
\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)
\(\Delta=P^2-4\left(1-P\right)^2\)
\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)
Để P có GTNN và GTLN thì phương trình (*) có nghiệm
\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)
\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)
\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)
\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)
\(\Leftrightarrow\frac{2}{3}\le P\le2\)
Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)
\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
\(\Leftrightarrow\left(x+y\right)^2+2\cdot\left(x+y\right)\cdot\frac{7}{2}+\frac{49}{4}-\frac{9}{4}=-y^2\)
\(\Leftrightarrow\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}=-y^2\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+5\right)=-y^2\le0\)
Vì \(x+y+2< x+y+5\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+2\le0\\x+y+5\ge0\end{matrix}\right.\Leftrightarrow-5\le x+y\le-2\)
\(\Leftrightarrow-4\le x+y+1\le-1\)
Vậy: \(Min=-4\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.;Max=-1\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)
cho x,y>0 thoả mãn x+y ≤ 1.
tình Min \(A=\frac{1}{x^2}+\frac{1}{^{y2}}+\frac{2}{xy}+4xy\)
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\)
Do x,y\(\ge\)0
Ta có: \(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*)
Và \(\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)(**)
Áp dụng bất đẳng thức (*) ta có: \(A=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\ge\left(\frac{4}{x+y}\right)^2+4xy=\frac{16}{\left(x+y\right)^2}+4xy\)
Áp dụng bất đẳng thức (**) ta có:\(A\ge\frac{16}{\left(x+y\right)^2}+4xy\ge2\sqrt{\frac{16}{\left(x+y\right)^2}.4xy}=2.\frac{8\sqrt{xy}}{x+y}\ge16\sqrt{xy}\)(do x+y\(\le\)1)
mình đang còn suy nghĩ đây là bản nháp bạn xem thử
\(\text{Tìm GTNN của : }A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\text{ với }x;y>0\text{ và }x+y<1\)
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)