Giai phuong trinh 2x + 11 y = 7
giai he phuong trinh :
x/5=y/7=z/3
2x-y+az=30
theo mình nghĩ ý đầu là quy đồng lên :
X/5 = y/7 = z/3
<=> 21x/105 = 15y/105 = 35z/105
Sau đó rút gọn tử và mẫu :
<=> 5x = 7y = 3z
Ý còn lại mình chưa thấy bao giờ nên k biết
(2x + 7)2.(3x + 2).(2x +1)=3
Giai Phuong trinh
Sửa lại \(\left(12x+7\right)^2.\left(3x+2\right).\left(2x+1\right)=3\)
\(\Leftrightarrow\left(12x+7\right)^2.4\left(3x+2\right).6\left(2x+1\right)=72\)
\(\Leftrightarrow\left(12x+7\right)^2.\left(12x+8\right).\left(12x+6\right)=72\)
Đặt \(12x+7=y\) , thế vào phương trình trên ta có:
\(y^2.\left(y+1\right).\left(y-1\right)=72\)\(\Leftrightarrow y^4-y^2=72\)
\(\Leftrightarrow\left(y^2-9\right)\left(y^2+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y^2-9=0\\y^2+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=\pm3\\y^2=-8\end{matrix}\right.\Leftrightarrow y=\pm3\)vì \(y^2\ge0\)
Nếu \(y=3\Leftrightarrow12x+7=3\Leftrightarrow x=-\dfrac{1}{3}\)
Nếu \(y=-3\Leftrightarrow12x+7=-3\Leftrightarrow x=-\dfrac{5}{6}\)
1) Trong mat phang Oxy cho duong thang d co phuong trinh x + y = 10. Qua phep tinh tien theo vecto v = (2;-1), duong thang d co anh la duong thang co phuong trinh duoc xac dinh theo phuong trinh nao duoi day ( Minh giai ra: (d'): x + y = 11 )
A. 2x - y = 10 B. (x+2) + (y-1) = 10 C. (x-2)+(y+1) = 10 D. -x + 2y = 10
giai phuong trinh
a)2x^2 + 3xy + y^2 = 0
b) (x+1)(x+3)(x+5)(x+7)+15=0
b) (x+1)(x+7)(x+3)(x+5)+15=0
=> (x^2+7x+x+7)(x^2+5x+3x+15)+15=0
=> (x^2+8x+7)(x^2+8x+15)+15=0
giai phuong trinh
2x^2 + 3xy + y^2 = 0
\(2x^2+3xy+y^2=0\)
\(\Rightarrow2x^2+2xy+xy+y^2=0\)
\(\Rightarrow2x\left(x+y\right)+y\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(2x+y\right)=0\)
\(2x^2+3xy+y^2=0\)
\(\Leftrightarrow x^2+x^2+2xy+xy+y^2=0\)
\(\Leftrightarrow\left(x^2+xy\right)+\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow x\left(x+y\right)+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(2x+y\right)=0\)
Hoặc \(x+y=0\Leftrightarrow x=-y\left(1\right)\)
Hoặc \(2x+y=0\left(2\right)\)
Thế (1) vào (2) ta có:
\(-2y+y=0\)
\(\Leftrightarrow-y=0\Leftrightarrow y=0\)
\(\Leftrightarrow x=0\left(\text{vì x = -y}\right)\)
Vậy \(x=y=0\)
Ta có : \(2x^2+3xy+y^2=2x^2+2xy+xy+y^2=2x\left(x+y\right)+y\left(x+y\right)=\left(2x+y\right)\left(x+y\right)=0\)
\(=>\orbr{\begin{cases}2x+y=0\\x+y=0\end{cases}=>\orbr{\begin{cases}x=-\frac{y}{2}\\x=-y\end{cases}}}\)
Vậy x=-y hoặc x=-y/2 với mọi x thì 2x^2+3xy+y^2
giai he phuong trinh \(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+1}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}-\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}-\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
Đặt x+y-1=a; 2x-y+3=b
Theo đề, ta có:
4/a-5/b=5/2 và 3/a-1/b=7/5
=>a=22/9; b=-110/19
=>x+y=31/9; 2x+y=-110/19-3=-167/19
=>x=-2092/171; y=2681/171
giai he phuong trinh \(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}-\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
=>12/(x+y-1)-15/(2x-y+3)=15/2 và 12/(x+y-1)-4/(2x-y+3)=28/5
=>x+y-1=22/9; 2x-y+3=-110/19
=>x+y=31/9; 2x-y=-167/19
=>x=-914/513; y=2681/513
giai phuong trinh
√(3x+1)-√(6-x)+x^3-2x^2-(29/2)x-(11/2)=0
giai he phuong trinh
\(\hept{\begin{cases}\frac{2x-3}{x-2}-\frac{1}{y+2}=7\\\frac{2}{x-2}-\frac{3y+7}{y+2}=13\end{cases}}\)