cho hình vuông abcd từ b vẽ tia bx vuông góc vs bd .bx cắt bd tại k.chứng minh 1/cd^2 =1/ac^2+bk ^2
Bài 1: Cho hình bình hành ABCD. Vẽ tia Bx vuông góc với AC, Dy vuông góc với AC. Đường thẳng qua A vuông góc với BD cắt Bx tại P, cắt Dy tại Q. Đường thẳng qua C vuông góc với BD cắt Bx tại N, cắt Dy tại M. Đường thẳng NQ cắt AD ở E, BC ở F. CMR: MNPQ, MEPF là hình bình hành.
Bài 2: Cho tứ giác ABCD có AD = BC, góc C và góc D tù. Gọi M, N, P, Q lần lượt là trung điểm AB, AC, CD, BD. MNPQ là hình gì? Chứng minh.
1 cho hình thang ABCD (AB//CD) có AB=AD và AC=CD. Tính các góc của hình thang (vẽ hình dùm mình)
2. cho tam giác ABC vuông tại A có góc B= 6o độ. gọi tia Bx là tia phân giác của góc B cắt AC tại E. vẽ tia Cy vuông góc BC sao cho Cy cắt Bx tại F.
a) c/m tam giác CEF đều
b)vẽ CD vuông góc với EF. c/m tứ giác ABCD là hình thang vuông.( câu này cũng vẽ hình dùm mình un)
Bài 2:
a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)
=>ΔCFE đều
b: Xét tứ giác ABCD có
\(\widehat{BAC}=\widehat{BDC}=90^0\)
Do đó: ABCD là tứ giác nội tiếp
Cho tam giác ABC vuông tại A có AH vuông góc với BC(H thuộc BC).Trên nửa mặt phẳng bở BC không chứa điểm A vẽ tia Bx vuông góc với BC.Trên tia Bx lấy điểm D sao cho BD=AH
a)Chứng minh tam giác AHB=DBH
b)Vẽ HM vuông góc với AB và DH cắt AC tại K.Chứng minh AH=MK
Cho tam giác ABC vuông ở A , đường cao AH , BC= 100 , AH =48
a, Tính AB , AC
b, Từ B vẽ tia BX sao cho góc ABx = góc ACB . BX cắt AC tại D
Chứng Minh\(\frac{1}{AB^2}=\frac{1}{BD^2}+\frac{1}{BC^2}\)
a/ Đặt BH = x (x>0) (đvđd) => CH = 100-x (đvđd)
Áp dụng hệ thức về cạnh trong tam giác ta có : \(BH.HC=AH^2\) hay
\(x\left(100-x\right)=48^2\Leftrightarrow x^2-100x+48^2=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=36\\x=64\end{array}\right.\)
1. Nếu x = 36 thì \(AB=\sqrt{AH^2+BH^2}=\sqrt{48^2+36^2}=60\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{48^2+64^2}=80\)
2. Nếu x = 64 thì AB = 80 , AC = 60
b/ Ta có : góc ABD = góc ACB => góc ABD + góc ABC = góc ACB + góc ABC = 90 độ
=> BC vuông góc với BD tại B
Áp dụng hệ thức về cạnh trong tam giác vuông BDC có đường cao AB :
\(\frac{1}{AB^2}=\frac{1}{BD^2}+\frac{1}{BC^2}\)(đpcm)
Cho hình bình hành ABCD. Vẽ tia Bx vuông góc AC; Dy vuông góc AC. Đường thẳng qua A vuông góc với BD cắt Bx tại N, cắt Dy tại M. Đường thẳng NQ cắt AD ở E, BC cắt ở F.
a) Cm: MNPQ, MEPF là hình bình hành
b) ABCD có đặc điểm gì để MNPQ là hình thoi?
1.Cho hình bình hành ABCD đường chéo lớn BD qua A kẻ đường thẳng cắt BD và BC tại E và F cắt tia DC tại K.
a)chứng minh AE2 =EF.EK
b)kẻ AH vuông góc với BD tại H,HM vuông góc với AB tại M.Chứng minh AH2 =AM.CD
c)Kẻ BI vuông góc với CD,BK vuông góc với AD.Chứng minh:AD.CI+DC.DN=BD2
Cho tam giác ABC, góc A= 90 độ, góc B= 50độ. Kẻ AH vuông góc với BC( H thuộc BC), HE vuông góc với AC ( E thuộc AC )
a, Chứng minh:AB // HE
b, Tính góc CHE, gó AHE
c, Cho nửa mặt phẳng bờ AB, vẽ tia Bx sao cho góc ABx = 50 độ, Bx cắt AC tại D. Qua C vẽ đường vuông góc với AC cắt BD tại K. Chứng minh: góc BCK= góc BKC
d, Phân giác BK của góc CBK cắt AC tại I, chứng minh BI vuông góc với CK.
Vẽ hình ra hộ mình nha. Cảm ơn
Cho tam giác ABC cân tại A, BD vuông góc AC, CE vuông góc AB. Gọi I là giao của BD và CE
a) Chứng minh AI là phân giác của góc BAC
b) Vẽ tia Bx vuông góc AB, Cy vuông góc AC; Bx cắt Cy tại H. Chứng minh CH = HB và AH là trung trực của BC
cho tam giác ABC vuông tại A có góc B= 60 độ. gọi tia Bx là tia phân giác của góc B cắt AC tại E. vẽ tia Cy vuông góc BC sao cho Cy cắt Bx tại F.
a) CM: tam giác CEF đều
b)vẽ CD vuông góc với EF. CM: tứ giác ABCD là hình thang cân.
a) Ta có:
\(\widehat{A}+\widehat{ABC}+\widehat{BCA}=180\)
\(\Rightarrow\widehat{BCA}=180-90-60=30\)
Vì \(BC\perp Cy\Rightarrow\widehat{BCy}=90\)
Mà \(\widehat{BCy}+\widehat{ECF}+\widehat{BCA}=180\)
\(\Rightarrow\widehat{ECF}=180-90-30=60\left(1\right)\)
Vì \(\widehat{FBC}+\widehat{BCA}+\widehat{BFC}=180\)
\(\Rightarrow\widehat{BFC}=180-\frac{\widehat{ABC}}{2}-\widehat{BCA}\)
\(\Rightarrow\widehat{BFC}=60\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\Delta CEF\)là tam giác đều
a) Xét ΔABC∆ABC vuông tại AA
ˆABC=60oABC^=60o
⇒ACB=30o⇒ACB=30o
Ta có: BEBE là phân giác của ˆBB^
⇒ˆCBE=12ˆABC=30o⇒CBE^=12ABC^=30o
⇒ˆFEC=ˆECB+ˆEBC=60o⇒FEC^=ECB^+EBC^=60o
Xét ΔCBF∆CBF vuông tại CC có:
ˆCBF=30oCBF^=30o
⇒ˆCFB=60o⇒CFB^=60o
Xét ΔCEF∆CEF có:
ˆFEC=ˆCFB=60oFEC^=CFB^=60o
Do đó ΔCEG∆CEG đều
b) Sửa đề: ABCDABCD là hình thang cân
Ta có:
ˆBAC=ˆBDC=90oBAC^=BDC^=90o
Do đó ABCDABCD là tứ giác nội tiếp
⇒ˆACB=ˆADB=30o⇒ACB^=ADB^=30o
Ta lại có: ˆDBC=ˆACB=30oDBC^=ACB^=30o
nên ˆABD=ˆDBCABD^=DBC^
⇒ABCD⇒ABCD là hình thang đáy AB,CDAB,CD
Mặt khác: ΔDBC∆DBC vuông tại DD có:
ˆDBC=30oDBC^=30o
⇒ˆDCB=60o=ˆABC⇒DCB^=60o=ABC^
Do đó ABCDABCD là hình thang cân