So sánh B = 2 mũ 1 + 2 mũ 3 + 2 mũ 5 + chấm chấm chấm + 2 mũ 99 và F = 2 mũ 101 - 2
Cho a = 2 + 2 mũ 2 + 2 mũ 3 + chấm chấm chấm + 2 mũ 99 + 2 mũ 100 + 2 mũ 101 hỏi Nếu a chia cho 7 thì dư bao nhiêu?
a,,Cho S =1+2+2 cho S = 1 + 2 + 2 mũ 2 + 2 mũ 3 + chấm chấm chấm + 2 mũ 9 Hãy cho hãy so sánh ghép với 5 nhân 2 mũ 8
Cho A = 3 + 3 mũ 2 + 3 mũ 2 +
Cho A = 3 + 3 mũ 2 + 3 mũ 2 + chấm chấm chấm + 3 mũ 100
Tìm số tự nhiên n Biết rằng hai nhân a + 3 mũ n
chứng minh rằng 1/3 - 2/3 mũ 2 + 3/3 mũ 3 trừ 4 trên 3 mũ 4 + chấm chấm chấm chấm chấm chấm chấm + 99 - 3 mũ 99 - cho 130 mũ 100 nhỏ hơn 3/16
1/2 + 1/2 mũ 2 + 1,2 mũ 3 + 1,2 mũ 4 + 3 chấm ba chấm + 1,2 mũ 99 + 1/2 mũ 100
2A = 1 + \(\dfrac{1}{2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{2^3}\)+...+\(\dfrac{1}{2^{99}}\)
2A - A= 1- \(\dfrac{1}{2^{100}}\)
A= 1
Giải bài toán sau 1 + 1/2 + 1/2 mũ 2 + 1,2 mũ 3 + 1,2 mũ 4 + 3 chấm ba chấm + 1,2 mũ 99 + 1/2 mũ 100
Gọi biểu thức trên là Acó:
A=1+1/2+1/2^2+1/2^3+...+1/2^99+1/2^100
2A=1/2+1/2^2+1/2^3+....+1/2^99+1/2^100+1/2^101
2A-A=(1/2+1/2^2+1/2^3+....+1/2^99+1/2^100+1/2^101)-(1+1/2+1/2^2+1/2^3+...+1/2^99+1/2^100)
A=1/2^101-1
A=-1
rút gọn b = -5 mũ 0 + 5 mũ 1 + -5 mũ 2 + -5 mũ 3 + chấm chấm chấm + -5 mũ 2016 + 5 mũ 2017
rối quá :)
B = (-5)0 + 51 + (-5)2 + 53 + ... + (-5)2016 + 52017
B = 1 + 51 + 52 + 53 + ... + 52016 + 52017
5B = 5 + 52 + 53 + ... + 52016 + 52017
5B - B = (5 + 52 + 53 + ... + 52016 + 52017) - (1 + 51 + 52 + 53 + ... + 52016 + 52017)
4B = 52017 - 1
B = \(\dfrac{5^{2017}-1}{4}\)
chứng minh a = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + chấm chấm chấm + 2 mũ 2010 chia hết cho 3 và 7
Úi gời cơi cộng chấm chấm chấm :)))
+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{2009}.3\)
\(A=3\left(2+2^3+...+2^{2010}\right)⋮3\)
-> Đpcm
+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{2008}\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{2008}.7\)
\(A=7\left(2+2^4+...+2^{2008}\right)⋮7\)
-> Đpcm
chứng minh a = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + chấm chấm chấm + 2 mũ 2010 chia hết cho 3 và bảy
\(A=2^1+2^2+...+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2+2^2+2^3+...+2^{2010}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
+ Chứng minh chia hết cho 3
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)\)
Vì \(3\) ⋮ \(3\)
⇒ \(A\) ⋮ \(3\)
+ Chứng minh chia hết cho 7
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\left(2+2^4+...+2^{2008}\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)\)
Vì \(7\) ⋮ \(7\)
⇒ \(A\) ⋮ \(7\)
A=2\(^1\)+2\(^2\)+...+2\(^{2010}\)
=(2\(^1\)+2\(^2\))+(2\(^3\)+2\(^4\))+...+(2\(^{2009}\)+2\(^{2010}\))
=2(1+2)+2\(^3\)(1+2)+...+2\(^{2009}\)(1+2)
=3(2+2\(^3\)+...+2\(^{2009}\))⋮3