pt da thuc sau thanh nhan tu : x^3-9x^2+15x+ 25 ; X^8 - 4X^2- 11X+ 30
2 X^4+X^3 - 22X^2+ 15 X- 36
3X^3+ 5X^2-14X+ 4
2X^3- X^2- 3X -1
MN GIUPS MINH CAU NAY NHA ,MINH DANG CAN GAP, CHIEU NAY NOP
phan tich da thuc sau thanh nhan tu
a x^3-9x^2+15x+25
b x^3-4x^2-11x+30
c 2x^4+x^3-22x^2+15x-36
x^4+x^3-9x^2+10x-8 phan tich da thuc thanh nhan tu
Thay `x = 2` ta được :
`x^4+x^3-9x^2+10x-8`
`= 2^4 + 2^3 - 9*2^2 + 10*2 - 8`
`= 16 + 8 - 36 + 20 - 8`
`= 0`
Vậy `x = 2` là nghiệm của phương trình trên
Do đó ta thực hiện phép chia :
\(\left(x^4+x^3-9x^2+10x-8\right):\left(x-2\right)\)
Vậy \(x^4+x^3-9x^2+10x-8=\left(x-2\right)\left(x^3+3x^2-3x+4\right)\).
phan tich cac da thuc sau thanh nhan tu theo mau:
2x^3-x
5x^2(x-1)-15x(x-1)
3x^2y^2+12x^2y-15x-y^2
3x(x-2y)+6y(2y-x)
phan tich cac da thuc sau thanh nhan tu theo mau:
a)\(2x^3-x\)
\(=x\left(2x^2-1\right)\)
\(=x\left(\left(\sqrt{2}x\right)^2-1^2\right)\)\
\(=x\left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right)\)
b)\(5x^2\left(x-1\right)-15x\left(x-1\right)\)
\(=\left(5x^2-15x\right)\left(x-1\right)\)
\(=5x\left(x-3\right)\left(x-1\right)\)
d)\(3x\left(x-2y\right)+6y\left(2y-x\right)\)
\(=3x\left(x-2y\right)-6y\left(x-2y\right)\)
\(=\left(3x-6y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)^2\)
pt da thuc sau thanh nhan tu
x4+x3-4x2+x+1
\(x^4+x^3-4x^2+x+1\)
\(=x^4+3x^3+x^2-2x^3-6x^2-2x+x^2+3x+1\)
\(=x^2\left(x^2+3x+1\right)-2x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)\)
\(=\left(x^2-2x+1\right)\left(x^2+3x+1\right)\)
\(=\left(x-1\right)^2\left(x^2+3x+1\right)\)
phan tich da thuc thanh nhan tu
3x^4-48
x^4-8x
x^3-6x^2+9x
\(3x^4-48\)
\(=\left(3x^4-6x^3\right)+\left(6x^3-12x^2\right)+\left(12x^2-24x\right)+\left(24x-48\right)\)
\(=3x^3\left(x-2\right)+6x^2\left(x-2\right)+12x\left(x-2\right)+24\left(x-2\right)\)
\(=\left(x-2\right)\left[\left(3x^3+6x^2\right)+\left(12x+24\right)\right]\)
\(=\left(x-2\right)\left[3x^2\left(x+2\right)+12\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(x+2\right)\left(3x^2+12\right)\)
\(x^4-8x\)
\(=x\left(x^3-8\right)\)
\(=x\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(4x-8\right)\right]\)
\(=x\left[x^2\left(x-2\right)+2x\left(x-2\right)+4\left(x-2\right)\right]\)
\(=x\left(x-2\right)\left(x^2+2x+4\right)\)
\(x^3-6x^2+9x\)
\(=\left(x^3-3x^2\right)-\left(3x^2-9x\right)\)
\(=x^2\left(x-3\right)-3x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-3x\right)\)
\(=x\left(x-3\right)\left(x-3\right)\)
phan tich da thuc thanh nhan tu
a, x^2.y-x^3-9y+9x
b, x^2(x-1)+16(1-x)
\(x^2\left(x-1\right)+16\left(1-x\right)\)
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-16\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
pt da thuc thanh nhan tu:(x-3y)2-2(x-3y)(x+3y)+(x+3y)2
\((x-3y)^2-2(x-3y)(x+3y)+(x+3y)^2\)
\(=(x-3y-x-3y)^2\)
=\((-6y)^2\)
\(=36y^2\)
phan tich thanh cac nhan tu da thuc
x^2-25+y+2xy
phân tich da thuc thanh nhan tu
9x3y-16xy3
\(9x^3y-16xy^3\)
\(=xy\left(9x^2-16y^2\right)\)
\(=xy\left(3x-4y\right)\left(3x+4y\right)\)
9x^3y - 16 xy^3 = xy( 9x^2 - 16y^2)
= xy[(3x)^2 -( 4y)^2]
= xy( 3x -4y)(3x +4y)
Học tốt :)
\(9x^3y-16xy^3\)
\(\Leftrightarrow xy\left(9x^2-16y^2\right)\)
\(\Leftrightarrow xy\left(3x-4y\right)\left(3x+4y\right)\)
P/s tham khảo nha