Phân tích đa thức thành nhân tử
a) ab+b√a+√a+1
b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
Phân tích đa thức thành nhân tử (với các căn thức đều đã có nghĩa):
a) A = \(\sqrt{x^3}\) - \(\sqrt{y^3}\) + \(\sqrt{x^2y}\) - \(\sqrt{xy^2}\)
b) B = 5x2 - 7x\(\sqrt{y}\) + 2y
a: \(A=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)
b: \(B=5x^2-7x\sqrt{y}+2y\)
\(=5x^2-5x\sqrt{y}-2x\sqrt{y}+2y\)
\(=5x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(5x-2\sqrt{y}\right)\)
Phân tích đa thức thành nhân tử (với các căn thức đã cho đều có nghĩa)
A = \(x-y-3\left(\sqrt{x}+\sqrt{y}\right)\)
B = \(x-4\sqrt{x}+4\)
C = \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
D = \(5x^2-7x\sqrt{y}+2y\)
Tìm điều kiện xác định và phân tích các đa thức sau thành nhân tử:
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(C=\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(D=\sqrt{x^2+3x+2}+\sqrt{x+1}+2\sqrt{x+2}+2\)
\(A,ĐKXĐ:x;y\ge0\)
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)
\(ĐKXĐ:x;y\ge0\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)
\(ĐKXĐ:x;y\ge0\)
\(C=\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(=\left(\sqrt{x^3}+\sqrt{x^2y}\right)-\left(\sqrt{y^3}+\sqrt{xy^2}\right)\)
\(=\sqrt{x^2}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y^2}\left(\sqrt{y}+\sqrt{x}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)\)
Phân tích đa thức thành nhân tử
a. 7-3a (a lớn hơn hoặc =0)
b.\(14x^2-11\)
c.3x-\(6\sqrt{x}\)-6
d.\(x\sqrt{x}-3\sqrt{x}-2\)
Lời giải:
a.
$7-3a=(\sqrt{7}-\sqrt{3a})(\sqrt{7}+\sqrt{3a})$
b.
$14x^2-11=(\sqrt{14}x-\sqrt{11})(\sqrt{14}x+\sqrt{11})$
c.
$3x-6\sqrt{x}-6=3(x-2\sqrt{x}-2)$
$=3[(\sqrt{x}-1)^2-3]$
$=3(\sqrt{x}-1-\sqrt{3})(\sqrt{x}-1+\sqrt{3})$
d.
$x\sqrt{x}-3\sqrt{x}-2=x\sqrt{x}-2x+2x-4\sqrt{x}+\sqrt{x}-2$
$=x(\sqrt{x}-2)+2\sqrt{x}(\sqrt{x}-2)+(\sqrt{x}-2)$
$=(\sqrt{x}-2)(x+2\sqrt{x}+1)$
$=(\sqrt{x}-2)(\sqrt{x}+1)^2$
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
1. Phân tích đa thức thành nhân tử
\(a)\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}(a>0,b>0)\)
\(b)x-y+\sqrt{xy^2}-\sqrt{y^3}(x>0,y>0)\)
a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)
\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)
b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)
Phân tích đa thức thành nhân tử
a, AB+B\(\sqrt{A}\)+\(\sqrt{A}\)+ 1
b, \(\sqrt{x^3}\)- \(\sqrt{y^3}\)+ \(\sqrt{x^2y}\)- \(\sqrt{xy^2}\)
\(ab+b\sqrt{a}+\sqrt{a}+1\)
(đk: \(a\ge0\))
\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
ĐK: \(x,y\ge0\)
\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\left(\sqrt{x}+\sqrt{y}\right)-y\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)\)
Phân tích đa thức thành nhân tử( với a,b,x,y là các số không âm)
a)\(xy+y\sqrt{x}+\sqrt{x}+1\)
b) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)
Phân tích đa thức thành nhân tử
a,\(xy+y\sqrt{xy}+\sqrt{x}\sqrt{y}\)
b,\(6\sqrt{xy}+6xy-4x\sqrt{x}-9y\sqrt{y}\)
c,\(x+2y\sqrt{x}-3y^2\)
d,a\(a\sqrt{a}-2b\sqrt{b}-3b\sqrt{a}\)