CMR A=n²+n+1 ko chia hết cho 15( mọi số tự nhiên n)
bài 1 :
cho a= n^2+n+1
a, cmr a là số tự nhiên lẻ với mọi số tự nhiên n
b, cmr a ko chia hết cho 5 với mọi số tự nhiên n
a)Nếu n là số lẻ thì n^2 là số lẻ,n^2+n là số lẻ,n^2+n+1 là số chẵn
Nếu n là số chẵn thì n^2 là số chẵn,n^2+n là số chẵn,n^2+n+1 là số lẻ(đề ghi sai)
a, Nếu n là số lẻ thì \(n^2\) lẻ suy ra \(n^2+n\) chẵn (lẻ cộng lẻ ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
Nếu n là số chẵn thì \(n^2\) chẵn suy ra \(n^2+n\) chẵn (chẵn cộng chẵn vẫn ra chẵn nha bạn)
suy ra \(n^2+n+1\) lẻ
câu b thì mk không chắc chắn với cách của mk lắm nhưng bạn cứ tham khảo thử nha!
Xét 2 trường hợp
Xét \(n⋮5\)(n chia hết cho 5) suy ra \(n^2\)chia hết cho 5 mà 1 không chia hết cho 5 nên a không chia hết cho 5
Xét n không chia hết cho 5 suy ra \(n^2\)không chia hết cho 5 mà 1 không chia hết cho 5 nên a không chia hết cho 5
Vậy a không chia hết cho 5 với mọi số tự nhiên n
bài 2: cho A= 1+2 + 3+ 4+ ... + n
a) với n = 2009 . cmr: A chia hết cho 2009 và A ko chia hết cho 2010
b) cmr: ( A- 7 ) ko chia hết cho 10 với mọi số tự nhiên n
CMR với mọi n là số tự nhiên thì A=3^n + 1 ko chia hết cho 10^2016
Xét \(n=2k+1\)
\(\Rightarrow A=3^{2k+1}+1=3.9^k+1\)
Ta có: \(9^k\) chia cho 5 dư - 1 hoặc 1
\(\Rightarrow3.9^k\)chia 5 dư - 3 hoặc 3
\(\Rightarrow3.9^k+1\)chia 5 dư - 2 hoặc 4
\(\Rightarrow A\) không chia hết cho 5 nên A không chia hết cho \(10^{2016}\)
Xét \(n=2k\)
\(\Rightarrow A=3^{2k}+1=3^{2k}+1\)
Vì \(3^{2k}\)là số chính phương nên chia cho 4 dư 0 hoặc 1.
\(\Rightarrow A=3^{2k}+1\)chia cho 4 dư 1 hoặc 2.
\(\Rightarrow A\)không chia hết cho 4 nên A không chia hết cho \(10^{2016}\)
Bài 1:CMR với mọi q,p là số tự nhiên, thì:
a,105p+30q chia hết cho 5
b,105p+5q+1 chia cho 5 dư 1
Bài 2: CMR: (n2+n+1) ko chia hết cho 5 (n là số tự nhiên)
Bài 3:CMR trong hai số chẵn liên tiếp có một số chia hết cho 4.
Chứng tỏ răng A = n^2 + n^1 ko chia hết cho 15 với mọi số tự nhiên n
nhanh like cho
MÌNH LÀM MẤY BÀI RỒI MÀ CHẢNG THẤY AI TICK CẢ
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
CMR: B(n) = n^2 +n +2 không chia hết cho 15 với mọi số tự nhiên n
Xet \(n=3k\)
\(\left(3k\right)^2+3k+2\equiv2\left(mod3\right)\)
Xet \(n=3k+1\)
\(\left(3k+1\right)^2+3k+1+2\equiv4\equiv1\left(mod3\right)\)
Xet \(n=3k+2\)
\(\left(3k+2\right)^2+3k+2+2\equiv1+2+2\equiv2\left(mod3\right)\)
\(\Rightarrow n^2+n+2⋮̸3\)
\(\Rightarrow n^2+n+2⋮̸15\)
chứng tỏ n^2+n+1 ko chia hết cho 15 với mọi số tự nhiên n