TÌM X : \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
Tìm x biết
1) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
2)\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x+1\right)-33\)
3)\(6x\left(3x+5\right)-2x\left(9x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)-17x^2=0\)
4)\(\left(x-1\right)\left(x+2\right)-\left(x-3\right)+5x-7=0\)
Giúp mình nha. Camon nhiều
1) \(\left(3-x^2\right)+6-2x=0\)
2) \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)
3) \(x^2-6x+4\left(x-6\right)=0\)
4) \(\left(x+1\right)\left(2x-3\right)=x\left(x+1\right)\)
1) Ta có: \(\left(3-x^2\right)+6-2x=0\)
\(\Leftrightarrow3-x^2+6-2x=0\)
\(\Leftrightarrow-x^2-2x+9=0\)
\(\Leftrightarrow x^2+2x-9=0\)
\(\Leftrightarrow x^2+2x+1=10\)
\(\Leftrightarrow\left(x+1\right)^2=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{10}\\x+1=-\sqrt{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{10}-1\\x=-\sqrt{10}-1\end{matrix}\right.\)
Vậy: \(S=\left\{\sqrt{10}-1;-\sqrt{10}-1\right\}\)
2) Ta có: \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)
\(\Leftrightarrow10x-5+7=8-4x+2\)
\(\Leftrightarrow10x+4x=8+2+5-7\)
\(\Leftrightarrow14x=8\)
\(\Leftrightarrow x=\dfrac{4}{7}\)
Vậy: \(S=\left\{\dfrac{4}{7}\right\}\)
3) Ta có: \(x^2-6x+4\left(x-6\right)=0\)
\(\Leftrightarrow x\left(x-6\right)+4\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
Vậy: S={6;-4}
tìm x:
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
Mk ko chép lại đề nha !
\(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(2x+255=0\)
\(2x=-255\)
\(x=\frac{-225}{2}\)
(2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0
4x2 - 4x + 1 + x2 + 6x + 9 - 5x2 + 245 = 0
2x + 255 = 0
2x = -255
x = -127,5.
\(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
a, \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-\left(x^2-x+x-1\right)=16\)
\(\Leftrightarrow8x+1=0\Leftrightarrow x=-\frac{1}{8}\)
b, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow2x+255=0\Leftrightarrow x=-\frac{225}{2}\)
c, \(\left(x+2\right)\left(x-2\right)-x^3-2x=15\)
\(\Leftrightarrow x^2-4-x^3-2x=15\)( vô nghiệm )
d, \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3+6x^2-x+8x^3+1=28\)
\(\Leftrightarrow15x^2+26=0\Leftrightarrow x^2\ne-\frac{26}{15}\)( vô nghiệm )
Tính nhẩm hết á, sai bỏ quá nhá, sắp đi hc ... nên chất lượng hơi kém xíu ~~~
a) ( x + 4 )2 - ( x + 1 )( x - 1 ) = 16
<=> x2 + 8x + 16 - ( x2 - 1 ) = 16
<=> x2 + 8x + 16 - x2 + 1 = 16
<=> 8x + 17 = 16
<=> 8x = -1
<=> x = -1/8
b) ( 2x - 1 )2 + ( x + 3 )2 - 5( x + 7 )( x - 7 ) = 0
<=> 4x2 - 4x + 1 + x2 + 6x + 9 - 5( x2 - 49 ) = 0
<=> 5x2 + 2x + 10 - 5x2 + 245 = 0
<=> 2x + 255 = 0
<=> 2x = -255
<=> 2x = -255/2
c) ( x + 2 )( x2 - 2x + 4 ) - x( x2 + 2 ) = 15
<=> x3 + 23 - x3 - 2x = 15
<=> 8 - 2x = 15
<=> 2x = -7
<=> x = -7/2
d) ( x + 3 )3 - x( 3x + 1 )2 + ( 2x + 1 )( 4x2 - 2x + 1 ) = 28
<=> x3 + 9x2 + 27x + 27 - x( 9x2 + 6x + 1 ) + [ ( 2x )3 + 13 ] = 28
<=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 + 1 = 28
<=> 3x2 + 26x + 28 = 28
<=> 3x2 + 26x = 0
<=> x( 3x + 26 ) = 0
<=> \(\orbr{\begin{cases}x=0\\3x+26=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{26}{3}\end{cases}}\)
tìm x biết:
a, \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
b, \(\left(2x-1\right)^2-\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
a,\((x+4)^2-(x+1)(x-1)=16\)
\(\Rightarrow x^2+8x+16-x^2+1=16\)
\(\Rightarrow 8x=-1\Rightarrow x=-\dfrac{1}{8}\)
b,\((2x-1)^2-(x+3)^2-5(x+7)(x-7)=0\)
\(\Rightarrow 4x^2-4x+1-(x^2+6x+9)-5(x^2-49)=0\)
\(\Rightarrow 4x^2-4x+1-x^2-6x-9-5x^2-245=0\)
\(\Rightarrow -x^2-10x-244=0\)
\(\Rightarrow -(x^2-10x+25)-219=0\)
\(\Rightarrow -(x-5)^2-219=0\)
\(\Rightarrow (x-5)^2+219=0\)
Mà \((x-5)^2+219>0\) suy ra PT vô nghiệm
Tìm x,biết:
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)0
( 2x - 1 )2 + ( x + 3 )2 - 5( x + 7 )( x - 7 ) = 0
<=> ( 2x - 1 )2 + ( x + 3 )2 - 5( x2 - 72 ) = 0
<=> 4x2 - 4x + 1 + x2 + 6x + 9 - 5x2 + 245 = 0
<=> 2x + 255 = 0
<=> 2x = -255
<=> x = -255/2
\(pt< =>4x^2-4x+1+x^2+6x+9-5x^2+5.49=0\)
\(< =>2x+255=0< =>x=-\frac{255}{2}\)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(x^2+6x+9\right)-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow2x+255=0\)
\(\Leftrightarrow2x=-255\)
\(\Leftrightarrow x=\frac{-255}{2}\)
Vậy tập nghiệm của phương trình là: \(S=\left\{\frac{-255}{2}\right\}\)
A)\(\left(2x-7\right)^2-6\left(2x-7\right)\left(x-3\right)=0\)
B) \(x^3+1+\left(x^2-x+1\right)=0\)
C) \(\left(3x+1\right)^2-x^2+8x-16=0\)
D)\(\left(x+1\right)\left(x-1\right)^2\left(x+1\right)\left(x-2\right)^2=0\)
E) \(\left(3x+1\right)\left(x-3\right)^2=\left(3x+1\right)\left(2x-5\right)^2\)
F) \(\left(x+5\right)\left(3x+2\right)^2=x^2\left(x+5\right)\)
\(Bài\) \(2:\) \(Tìm\) \(x:\)
b) \(\left(5-x\right)^3+27=0\)
d) \(\left(x^2-1\right).\left(x+7\right)=0\)
f) \(\left(x^2+81\right).\left(x-7\right).\left(x^2-2\right)=0\)
b) Ta có: \(\left(5-x\right)^3+27=0\)
\(\Leftrightarrow\left(5-x\right)^3=-27\)
\(\Leftrightarrow5-x=-3\)
hay x=8
d) Ta có: \(\left(x^2-1\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-7\end{matrix}\right.\)
f) Ta có: \(\left(x^2+81\right)\left(x-7\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Tìm x, biết:
a, \(25x^2-9=0\)
\(b,\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(c,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x\right)^2-3^2=0\)
\(\Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
Vậy \(S=\left\{\frac{3}{5};\frac{-3}{5}\right\}\)
b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x+17=16\)
\(\Leftrightarrow8x=-1\)
\(\Leftrightarrow x=-\frac{1}{8}\)
Vậy.........
c)\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(x^2+6x+9\right)-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow2x=-255\)
\(\Leftrightarrow x=-127,5\)
Vậy.............
có j sai xót mong m.n bỏ qua☺
a) \(25x^2-9=0\)
<=> \(\left(5x\right)^2=9\)
<=> \(\left(5x\right)^2=3^2\)
<=> \(5x=3\)
<=> \(x=\frac{3}{5}\)
b) \(\left(x+4\right)^2-\left(x-1\right)\left(x+1\right)=16\)
<=> \(x^2+2.x.4+4^2-\left(x^2-1^2\right)=16\)
<=> \(x^2+8x+16-x^2+1=16\)
<=> \(\left(x^2-x^2\right)+8x+\left(16+1\right)=16\)
<=> \(8x+17=16\)
<=> \(8x=-1\)
<=> \(x=\frac{-1}{8}\)
c) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
<=> \(\left(2x\right)^2-2.2x.1+1^2+x^2+2.x.3+3^2-5\left(x^2-7^2\right)=0\)
<=> \(4x^2-4x+1+x^2+6x+9-5x^2+5.7^2=0\)
<=> \(\left(4x^2+x^2-5x^2\right)-\left(4x-6x\right)+\left(1+9+5.7^2\right)=0\)
<=> \(2x+245=0\)
<=> \(2x=-245\)
<=> \(x=\frac{-245}{2}\)
a) \(25x^2-9=0\)
\(\Rightarrow25x^2-3^2=0\)
\(\Rightarrow\left(25x+3\right).\left(25x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}25x+3=0\\25x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}25x=-3\\25x=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-3}{25}\\x=\frac{3}{25}\end{cases}}\)
b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Rightarrow\left(x+4\right)^2-\left[\left(x+1\right)^2-\left(x-1\right)^2\right]=16\)
\(\Rightarrow\left(x+4\right)^2=16\)
\(\Rightarrow\left(x+4\right)^2=4^2\)
\(\Rightarrow x+4=4\)
\(\Rightarrow x=0\)
c) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Rightarrow\left(2x-1\right)+2\left(2x-1\right)\left(x+3\right)+\left(x+3\right)^2-5.\left(x+7\right)^2-\left(x-7\right)^2=0\)
\(\Rightarrow2\left(x+3\right)^3=0\)
\(\Rightarrow\left(x+3\right)^2=0\)
\(\Rightarrow x=3\)