Cho tam giác ABC vuông tại A , đường cao AH. E, F lần lượt là hình chiếu của H lên AB và AC. CM:
a) BC2 = 3AH2 + BE2 + CF2
b) \(\frac{AB^2}{AC^2}\)= \(\frac{HB}{HC}\)
c) \(\frac{AB^3}{AC^3}\)=\(\frac{BE}{CF}\)
d) \(AH^3\)= BC . HE . HF
Cho tam giác ABC vuông tại A và đường cao AH. Gọi E,F là hình chiếu của H lên AB,AC. Chừng minh rằng:
a. BC2=3AH2+BE2+CF2
b. AE.AB=AF.AC
c. \(\dfrac{AB^2}{AC^2}\)=\(\dfrac{HB}{HC}\)
d. \(\dfrac{AB^3}{AC^3}\)=\(\dfrac{BE}{CF}\)
e. AB3=BE.BC2
Giúp mình câu e với!!
e: BE*BC^2
=BH^2/BA*BC^2
=(BH*BC)^2/BA
=BA^4/BA=BA^3
cho tam giác ABC vuông tại A,đường cao AH.gọi D,E lần lượt là hình chiếu của H lên AB và AC.chứng minh: a) \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
b) \(\frac{AB^3}{AC^3}=\frac{BD}{CE}\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi HD, HE lần lượt là đường cao của tam giác AHB và tam giác AHC. Chứng minh rằng:
a,\(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
b,\(\frac{AB^3}{AC^3}=\frac{BD}{EC}\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(BD\cdot BA=BH^2\)
\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(CE\cdot CA=CH^2\)
\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)
Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)
Cho tam giac ABC vuông tại A đường cao AH ,E và F lần lượt là hình chiếu của H trên AB và AC . Cm a. EB/FC=AB/AC b. AC^2 / AB^2 = HC/HD c. BC.DE.CF=AH^3
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
cho tam giác ABC vuông tại A, đường cao AH. gọi E,F lần lượt là hình chiếu H trên AB,AC.Chứng minh:
a, FB trên FC =AB3 trên AC3
b,BC2= 3AH2 + BE2 +CF2
c,BE. căn CH +CF. căn BH = AH. căn BC
a) đề phải là \(\dfrac{EB}{FC}=\dfrac{AB^3}{AC^3}\)
Ta có: \(\dfrac{EB}{FC}.\dfrac{AB}{AC}=\dfrac{BE.BA}{AC.CF}=\dfrac{BH^2}{CH^2}=\left(\dfrac{BH}{CH}\right)^2=\left(\dfrac{BH.BC}{CH.BC}\right)^2\)
\(=\left(\dfrac{AB^2}{AC^2}\right)^2=\dfrac{AB^4}{AC^4}\Rightarrow\dfrac{EB}{FC}=\dfrac{AB^3}{AC^3}\)
b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật
\(\Rightarrow AH^2=EF^2=EH^2+HF^2\)
Ta có: \(3AH^2+BE^2+CF^2=\left(BE^2+EH^2\right)+\left(CF^2+FH^2\right)+2AH^2\)
\(=BH^2+CH^2+2.BH.CH=\left(BH+CH\right)^2=BC^2\)
cho tam giác ABC vuông tại A đường cao AH,cho M và N lần lượt là hình chiếu của H lên AB và Ac. Chứng minh: AB^2 + HC^2= AC^2 +HB^2
Theo định lí Pitago
Xét tam giác ABH vuông tại H => AB2 - HB2 = AH2
Xét tam giác ACH vuông tại H => AC2 - HC2 = AH2
=> AB2 - HB2 = AC2 - HC2=AH2
=> AB2 + HC2 = AC2 + HB2
cho tam giác ABC vuông tại A, AB<AC, AH vuông BC, E và F là hình chiếu của H trên AB, AC. O là giao điểm của AH và EF. C/m
a) HB.HC=4.OE.OF
b)\((\frac{AB}{AC})^2=\frac{HB}{HC}\)