e: BE*BC^2
=BH^2/BA*BC^2
=(BH*BC)^2/BA
=BA^4/BA=BA^3
e: BE*BC^2
=BH^2/BA*BC^2
=(BH*BC)^2/BA
=BA^4/BA=BA^3
cho tam giác ABC vuông tại A(AB<AC), đường cao AH. Gọi E và F là hình chiếu của H trên trên AB và AC; O là trung điểm của BC và AO cắt EF tại I.
a) CMR: \(\dfrac{AH^2}{BE.CF}=\dfrac{AB}{AC}+\dfrac{AC}{AB}\)
b) Tính \(\dfrac{AI}{HB}+\dfrac{AI}{HC}\)
Cho tam giác ABC vuông tại A có đường sao AH.Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh các đẳng thức sau: a) BC2=2AH2+BH2+CH2 b) BE/CF=AB3/AC3 c) BE2=BH3/BC d) AH3=BC×BE×CF e) HE×HF=AH3/BC
Cho tam giác nhọn ABC, AB < AC, đường cao AD. Gọi E, F lần lượt là hình chiếu vuông góc của D trên AB, AC.
c) Chứng minh: \(tan^3C=\dfrac{BE}{CF}\)
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, trung tuyến AM. Gọi E và F lần lượt là hình chiếu của H lên AB và AC; I và K lần lượt là trung điểm của HB và HC. Chứng minh:
a/ AH.BC=HF.AC+HE.AB
b/ BC2=BE2+CF2+3AH2
c/ AB2/AC2=HB/HC và AB3/AC3=BE/CF
d/AF.FC+AE.EB=HB.HC
e/AH3=BC.HE.HF và AH3=BC.BE.CF
f/ AM vuông góc với EF
Cho Tam giác vuông tại A. Đường cao AH. Biết AC = 12cm, BC = 15cm. a) Tính HA, HB, HC. b) Gọi E, F là hình chiếu vuông góc của H lần lượt lên AB, AC. Chứng minh : AE.AB = AF.AC c) Chứng minh: HE²+HF² = HB.HC
cho tam giác ABC vuông tại A có đường cao AH ( H∈BC)
a) Cho biết AB=6cm,BC=10cm. Tính AC,AH,BH
bb) Gọi E,F lần lượt là hình chiếu của điểm H lên các cạnh AB,AC. Chứng minh AE.AB=AF.AC và △AFE∼△ABC
c) Kẻ phân giác BD của góc ABC ( D∈ AC). Chứng minh : cotDBC=(AB+BC)/AC
Cho tam giác ABC vuông tại A, Đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a. AB^2/AC^2 = HB/HC
b. AB^3/AC^3 = DB/EC
giải cụ thể giúp em với ạ
Bãi 4) Cho tam giác ABC có AB = 6cm; AC = 8cm; BC = 10cm. a) Chứng tỏ tam giác ABC vuông b) Vẽ đường cao AH của tam giác ABC. Tính AH; HC và số đo góc B. c) Gọi E; E lần lượt là hình chiếu của H lên AB; AC. Chứng minh: BH^3 = BE^2.BC.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E,F là hình chiếu của H lên AB,AC. Chứng minh rằng:
\(\sqrt[3]{BE^2}+\sqrt[3]{CF^2}=\sqrt[3]{BC^2}\)