tìm tập xác định của hàm số y= \(\frac{1}{\sqrt{1+cos4x}}\) và hàm số y= \(\sqrt{tanx-\sqrt{3}}\)
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
c1 tập xác định của hàm số \(y=\dfrac{sin2x+cosx}{tanx-sinx}\)
c2 tập xác định của hàm số \(y=\sqrt{1+cot^22x}\)
c3 tập xác định của hàm số \(y=cot\left(x-\dfrac{\pi}{4}\right)+tan\left(x-\dfrac{\pi}{4}\right)\)
1.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
2.
ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
3.
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
câu 2 ..... \(\dfrac{cos^22x}{sin^22x}=cot^22x\) nên suy ra sin2x khác 0 đúng hơm
còn câu 3, tui ko hiểu chỗ sin(2x-pi/4).. sao ở đây rớt xuống dợ
Tìm tập xác định của các hàm số sau:
a) \(y = \sqrt {2x - 1} + \sqrt {5 - x} \)
b) \(y = \frac{1}{{\sqrt {x - 1} }}.\)
a) Tập xác đinh của hàm số \(y = \sqrt {2x - 1} + \sqrt {5 - x} \) là:
\(\left\{ {\begin{array}{*{20}{c}}{2x - 1 \ge 0}\\{5 - x \ge 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x \ge \frac{1}{2}}\\{x \le 5}\end{array}} \right.} \right.\,\, \Leftrightarrow \,\,\frac{1}{2} \le x \le 5\)
Vậy tập xác định của hàm số là: \(D = \left[ {\frac{1}{2};5} \right].\)
b) Tập xác định của hàm số \(y = \frac{1}{{\sqrt {x - 1} }}\) là: \(x - 1 > 0\,\, \Leftrightarrow \,\,x > 1.\)
Vậy tập xác định của hàm số là: \(D = \left( {1; + \infty } \right).\)
Tìm tập xác định của mỗi hàm số sau:
a) \(y = \frac{1}{{{x^2} - x}}\)
b) \(y = \sqrt {{x^2} - 4x + 3} \)
c) \(y = \frac{1}{{\sqrt {x - 1} }}\)
a) \(y = \frac{1}{{{x^2} - x}}\) xác định \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)
Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)
b) \(y = \sqrt {{x^2} - 4x + 3} \) xác định \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)
Tập xác định \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)
c) \(y = \frac{1}{{\sqrt {x - 1} }}\) xác định \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\)
Tập xác định \(D = \left( {1; + \infty } \right)\)
Tìm tập xác định của hàm sô \(y=\sqrt{x+2}+\dfrac{x^3}{4\left|x\right|-3}\) và hàm số \(y=\dfrac{x}{\left|x\right|x+1}-\sqrt{3-x}\)
1.Tìm tập xác định của các hàm số sau:
a. y =\(\frac{1}{\sqrt{-cotx-\sqrt{3}}}\)
b. y = \(\frac{1}{cotx-\sqrt{3}}\)
Tìm tập xác định của hàm số: y=\(\frac{\sqrt{3-2x}+x\sqrt{3x+11}}{\sqrt{1-x^2}+\sqrt{\left|3x^2-2x-5\right|}}\)
tìm tập xác định của hàm số y = \(\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)
\(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)
\(=\sqrt{x+2+2\sqrt{x+2}+1}+\sqrt{1-x^2+2\cdot\sqrt{1-x^2}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{x+2}+1\right)^2}+\sqrt{\left(\sqrt{1-x^2}+1\right)^2}\)
\(=\left|\sqrt{x+2}+1\right|+\left|\sqrt{1-x^2}+1\right|\)
ĐKXĐ: \(\left\{{}\begin{matrix}x+2>=0\\1-x^2>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-2\\x^2< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\-1< =x< =1\end{matrix}\right.\)
=>-1<=x<=1
TXĐ là D=[-1;1]
Tìm tập xác định của hàm số: \(y = \frac{{\sqrt {x + 2} }}{{x - 3}}\)
Tìm tập xác định của hàm số: \(y = \frac{{\sqrt {x + 2} }}{{x - 3}}\) là \(\left\{ \begin{array}{l}x + 2 \ge 0\\x - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - 2\\x \ne 3\end{array} \right.\)
Vậy tập xác định của hàm số là \(D = \left[ { - 2; + \infty } \right)\backslash \left\{ 3 \right\}\).