chứng minh rằng phương trình 3x^2-2(a+b+c)x+ab+bc+ac=0 luôn có nghiệm với a,b,c
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
Lời giải:
a) $f(x)=x^5-3x+3$ liên tục trên $R$
$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$
Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$
Nghĩa là pt đã cho luôn có nghiệm.
b) $f(x)=x^5+x-1$ liên tục trên $R$
$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$
Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$
Hay pt đã cho luôn có nghiệm.
c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$
$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$
$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$
Hay pt đã cho luôn có nghiệm.
a) Chứng minh rằng với a, b , c là các số thực thì phương trình sau luôn có nghiệm:
(x – a)(x – b) + (x – b)(x – c) + (x – c)(x – a) = 0
b) Chứng minh rằng với ba số thức a, b , c phân biệt thì phương trình sau có hai nghiệm phân biết:
c) Chứng minh rằng phương trình: c2x2 + (a2 – b2 – c2)x + b2 = 0 vô nghiệm với a, b, c là độ dài ba cạnh của một tam giác.
d) Chứng minh rằng phương trình bậc hai:
(a + b)2x2 – (a – b)(a2 – b2)x – 2ab(a2 + b2) = 0 luôn có hai nghiệm phân biệt.
12345x331=...///???......................ai nhanh mk tk cho
mk ko biet dang cau hoi nen phai the thoi mong cac ban thon cam
cho phương trình ax^2+bx+c=0 với các số a,b,c là các số thực nghiệm khác 0 và thỏa mãn điều kiện a+b+2c=0. Chứng minh rằng phương trình trên luôn có nghiệm trên tập số thực
Đặt \(f\left(x\right)=ax^2+bx+c\).
\(f\left(0\right)=c;f\left(1\right)=a+b+c\)
Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).
Biết phương trình: x2 + ax + bc = 0 và phương trình: x2 + bx + ac = 0 có 1 đúng nghiệm chung và \(a\ne b\ne c\) ; \(c\ne0\)
Chứng minh rằng: các nghiệm còn lại của hai phương trình trên là nghiệm của phương trình: x2 + cx + ab = 0
Gọi x0 là nghiệm chung của 2 phương trình
Ta có:\(x_0^2+ax_0+bc=0;x_0^2+bx_0+ca=0\)
\(\Rightarrow\left(a-b\right)x_0=c\left(a-b\right)\)
Mà \(a\ne b\Rightarrow x_0=c\)
Gọi các nghiệm của phương trình x2 +ax + bc = 0 và x2 + bx + ac = 0 là x1 và x2
Theo Viet ta có:\(x_0x_1=bc;x_0x_2=ca\)
Mà \(x_0=c\ne0\Rightarrow x_1=b;x_2=a\)
Do b;c là các nghiệm của phương trình x2 +ax + bc = 0 nên b+c=-a => -c=a+b => a,b là các nghiệm của phương trình:
x2 - ( a+b ) x + ab = 0 hay x2 + cx + ab = 0
Cho ba số \(a,b,c\) là ba số khác nhau \(c\ne0\). Chứng minh rằng nếu các phương tình \(x^2+ax+bc=0\)và \(x^2+bx+ac=0\)có đúng một nghiệm chung thì các nghiệm còn lại của chúng là ác nghiệm của phương trình \(x^2+cx+ab=0\)
Giúp mk với nha mk tick cho 5 cái luôn
Để 2 pt \(x^2+ax+bc=0\)(1)
và \(x^2+bc+c=0\) (2)
thì \(\hept{\begin{cases}\Delta_1=a^2-4bc\ge0\\\Delta_2=b^2-4ac\ge0\end{cases}}\)
Gọi 2 nghiệm của pt (1) là \(x_0\), \(x_1\)và 2 nghiệm của pt (2) là \(x_0\), \(x_2\)
( Nghiệm chung là \(x_0\))
Theo Vi-et , ta có :
\(\hept{\begin{cases}x_0+x_1=-a\\x_0.x_1=bc\end{cases}}\)và \(\hept{\begin{cases}x_0+x_2=-b\\x_0.x_2=ac\end{cases}}\)
Suy ra :
\(\hept{\begin{cases}\left(x_0+x_1\right)-\left(x_0+x_2\right)=\left(-a\right)-\left(-b\right)\\\frac{x_0.x_1}{x_0.x_2}=\frac{bc}{ac}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=b-a\\\frac{x_1}{x_2}=\frac{b}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{b}{a}.x_2\\\frac{b}{a}.x_2-x_2=b-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2.\left(\frac{b}{a}-1\right)=b-a\Leftrightarrow x_2.\frac{b-a}{a}=b-a\\x_1=\frac{b}{a}.x_2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=a\\x_1=b\end{cases}}\)
Vì \(x_1=b\)và \(x_0.x_1=bc\)nên \(x_0=c\)
Suy ra : \(x_0+x_1=-a\)\(\Leftrightarrow x_1+a=-x_0\)\(\Leftrightarrow x_1+x_2=-c\)
Mà \(x_1.x_2=ab\)
Suy ra : \(x_1\)và \(x_2\)là 2 nghiệm của pt : \(x^2+cx+ab=0\)
Cho phương trình: x^2-2mx+4m-5=0
a) Chứng tỏ rằng phương trình luôn có 2 nghiệm phân biệt với mọi m
b) Giải phương trình với m=2
c) Chứng minh rằng: P=x1(4-x2)+x2(4-x1) không phụ thuộc vào m
Chứng minh rằng phương trình \(\left(a^4-b^4\right)x^2-2\left(a^6-ab^5\right)x+a^8-a^2b^6=0\)luôn luôn có nghiệm với mọi a,b
Chứng minh rằng phương trình sau luôn có nghiệm với mọi m:(-X^2+3X-2)m+3X-5=0
\(pt:\left(-x^2+3x-2\right)m+3x-5=0\)
\(\Leftrightarrow-x^2m+3mx-2m+3x-5=0\)
\(\Leftrightarrow-x^2m+\left(3m+3\right)x-2m-5=0\)
pt co nghiem \(\Leftrightarrow\Delta=\left(3m+3\right)^2-4m\left(2m+5\right)\ge0\)
\(\Leftrightarrow9m^2+18m+9-8m^2-20m\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+8>0\left(ld\right)\)
Vay pt luon co nghiem voi moi m
6. Biết rằng phương trình x 3 −3x 2 +3 = 0 có ba nghiệm phân biệt. Chứng minh rằng trong ba nghiệm này có hai nghiệm a,b thoả mãn ab+3 = a+2b.
7. Cho đa thức P(x) = 2x 4 −x 3 −5x 2 +5x−5. Gọi a,b, c là ba nghiệm phân biệt của đa thức Q(x) = x 3 −3x+1. Tính P(a).P(b).P(c).
8. Biết rằng phương trình P(x) = x 3 +3x 2 −1 có ba nghiệm phân biệt a < b < c. Chứng minh rằng c = a 2 +2a− 2,b = c 2 +2c−2,a = b 2 +2b−2.