Phân tích đa thức thành nhân tử:
x^2 + 5 căn x + 6 =0
Phân tích đa thức thành nhân tử:x^2+x+6
\(=x^2+2x\cdot\frac{1}{2}+\frac{1}{4}-\left(\frac{\sqrt{23}}{2}i\right)^2\)
\(=\left(x+\frac{1}{2}\right)^2\)\(-\left(\frac{\sqrt{23}}{2}i\right)^2\)
\(\left(x+\frac{1}{2}-\frac{\sqrt{23}}{2}i\right)\left(x+\frac{1}{2}+\frac{\sqrt[]{23}}{2}i\right)\)
Phân tích đa thức thành nhân tử:x^4+x^2+4=0
\(x^4\ge0;x^2\ge0;4>0\Rightarrow x^4+x^2+4>0\)
Phân tích đa thức thành nhân tử:
x-\(\sqrt{x}\)-2
\(x-\sqrt{x}-2\\ =x+\sqrt{x}-2\sqrt{x}-2\\ =\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)\\ =\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
Phân tích đa thức thành nhân tử:x5+x-1
Phân tích đa thức thành nhân tử:
x^4 - x^2 + 2x + 2
\(x^4-x^2+2x+2\)
\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)
\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)
\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)
\(x^4-x^2+2x+2\)
\(=x^2\left(x^2-1\right)+2\left(x+1\right)\)
\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)
\(=\left(x+1\right)\left(x^3-x^2+2\right)\)
phân tích đa thức thành nhân tử:x^6+x^4+x^2y^2+y^4-y^6
giúp mk với mk tick cho
\(x^6+x^4+x^2y^2+y^4-y^6\)
\(=\left(x^2\right)^3-\left(y^2\right)^3+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2-1\right)\)
\(=\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\left(x^2-y^2-1\right)\)
phân tích đa thức thành nhân tử:x^4+x^3+2x^2-x+3
phân tích đa thức sau thành nhân tử:x^6-3x^4+3x^2-1-y^3
phân tích đa thức thành nhân tử:
x^3 + 27x + (x+3)(x-9)
\(x^3+27x+\left(x+3\right)\left(x-9\right)\)
⇒\(x^3+27x+x^2-6x-27\)
⇒\(x^3+x^2+21x-27\)
Chịu
Sửa đề: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\cdot\left(x-2\right)\left(x+3\right)\)