cho a,b,c >0 và a+b+c=1
chứng mỉnh rằng P=\(\frac{9}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2}\ge\frac{39}{2}\)
Cho a,b,c>0
Chứng minh rằng:\(a\left(\frac{a}{2}+\frac{1}{bc}\right)+b\left(\frac{b}{2}+\frac{1}{ca}\right)+c\left(\frac{c}{2}+\frac{1}{ab}\right)\ge\frac{9}{2}\)
Cho 3 so thuc a,b,c khong am thỏa mãn (a+b)(b+c)(c+a)>0.Chứng minh rằng
\(\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}\ge\)\(\frac{9}{4\left(ab+bc+ac\right)}\)
Cho a; b; c > 0 sao cho a+b+c=3. Chứng minh rằng
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
Cho a,b,c>0 thỏa mãn \(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge\left(abc\right)^2\)
Chứng minh rằng \(\frac{\left(ab\right)^2}{\left(a^2+b^2\right)c^3}+\frac{\left(bc\right)^2}{\left(b^2+c^2\right)a^3}+\frac{\left(ac\right)^2}{\left(a^2+c^2\right)b^3}\ge\frac{\sqrt{3}}{2}\)
Cho a,b,c>0 và \(a^2b+b^2c+c^2a=3\)
Chứng minh rằng : \(\frac{ab+bc+ca}{2\left(a^2+b^2+c^2\right)}+\frac{1}{6}\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)≥\(\frac{a+b+c}{3}\)
Chứng minh rằng
\(a\left(\frac{a}{2}+\frac{1}{bc}\right)+b\left(\frac{b}{2}+\frac{1}{ca}\right)+c\left(\frac{c}{2}+\frac{1}{ab}\right)\ge\frac{9}{2} \)
\(với\forall a,b,c>0\)
bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{a}{bc}\ge\frac{9}{2}\)
mặt khác: \(\Sigma_{cyc}\frac{a}{bc}=\frac{1}{2}\Sigma_{cyc}\left(\frac{b}{ca}+\frac{c}{ab}\right)\ge\Sigma\frac{1}{a}\)\(\Rightarrow\)\(\Sigma_{cyc}\frac{a}{bc}\ge\Sigma_{cyc}\frac{1}{a}\)
do đó cần CM: \(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{1}{a}\ge\frac{9}{2}\) (1)
\(VT_{\left(1\right)}=\Sigma_{cyc}\left(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\)
"=" \(\Leftrightarrow\)\(a=b=c=1\)
Cho a, b, c là các số thực dương thoả mãn a+b+c=3. Chứng minh rằng:
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
Theo bđt Cauchy - Schwart ta có:
\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)
\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)
Đặt \(ab+bc+ca=x;abc=y\).
Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)
\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )
Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1
làm sao mà \(x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\)lại luôn đúng
Chứng minh rằng với a,b,c > 0 thì \(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
Help me!
Í em mới lớp 7 thôi hả
Vậy mà giỏi đến mức được làm công tác viên òi
Tức là chị là chị của công tác viên hí hí
~ lớp 8 ~
Lớp 7 nhưng chịu quá nhiều tai tiếng ạ,vs như lúc đó ko thuộc hằng đẳng thức bình phương của một tổng,làm xàm thế là...
What !!! Lớp 7 chi học hằng đẳng thức !!!
Tai chị có thể nghe nhầm nhưng mắt chị thì đọc ik đọc lại sao nhầm đây???
Rõ là lớp 8 ( bọn chị ) mới học mừ
Cho a,b,c >0 Chứng minh rằng :
\(\frac{c\left(a^2+b^2\right)^2}{b^3\left(ab+c^2\right)}+\frac{b\left(c^2+a^2\right)^2}{a^3\left(ac+b^2\right)}+\frac{a\left(b^2+c^2\right)^2}{c^3\left(bc+a^2\right)}\ge\frac{2\left(a^2b+b^2c+c^2a\right)}{abc}\)
mk mới hk lp 6 , bài này bó tay ko giải đc