\(P=2\left(\frac{4}{2\left(ab+bc+ac\right)}+\frac{1}{a^2+b^2+c^2}\right)+\frac{1}{2\left(ab+bc+ca\right)}\)
\(P\ge\frac{2.\left(2+1\right)^2}{2\left(ab+bc+ca\right)+a^2+b^2+c^2}+\frac{1}{\frac{2\left(a+b+c\right)^2}{3}}\)
\(P\ge\frac{18}{\left(a+b+c\right)^2}+\frac{3}{2\left(a+b+c\right)^2}=18+\frac{3}{2}=\frac{39}{2}\)
Dâu "=" khi \(a=b=c=\frac{1}{3}\)