cho a,b,c >0 và a+b+c=1
chứng mỉnh rằng P=\(\frac{9}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2}\ge\frac{39}{2}\)
Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Chứng minh rằng a=b=c
Rút gọn các biểu thức sau:
a) \(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}\left(\frac{1}{a}+\frac{1}{b}\right)\right].\frac{ab}{\left(a+b\right)^2}\)
b) \(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+4xy+y^2}{16x}\)
\(\frac{a.x^2b.y^2+c.z^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Chõa+by+cz=0 và a+b+c=1/1993
Tính phân thức trên
Cho \(\frac{a\left(c-b\right)}{b-c}+\frac{b\left(a-c\right)}{c-a}+\frac{c\left(b-a\right)}{a-b}=3\)
CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Cho a+b=1, ab khác 0. Chứng minh rằng: \(\frac{a}{b^3-1}-\frac{b}{a^3-1}\) = \(\frac{2\left(b-a\right)}{a^2b^2+3}\)
Với a,b,c >0.Chứng minh:
\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 1: Cho \(\text{a+b+c=ab+bc+ac=abc}\) \(\ne\) \(0\) và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Tính \(A=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Bài 2: Cho \(a,b,c\ne0\). CMR nếu \(x,y\) thỏa mãn :
\(\dfrac{a}{c}x+\dfrac{b}{c}y=\dfrac{b}{a}x+\dfrac{c}{a}y=\dfrac{c}{b}x+\dfrac{a}{b}y=1\)
thì \(\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}=3\)
Bài 3: Cho \(ax+by+cz=0\) và \(a+b+c=\dfrac{1}{2019}\)
Tính \(A=\dfrac{a^2x^2+b^2y^2+c^2z^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Rút gọn A = \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)