Rút gọn các biểu thức sau:
a) \(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}\left(\frac{1}{a}+\frac{1}{b}\right)\right].\frac{ab}{\left(a+b\right)^2}\)
b) \(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+4xy+y^2}{16x}\)
Mọi người giúp em bài này với ạ
Em cảm ơn ạ
Cho a+b+c=1
Chứng minh: \(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+abc-1}=\frac{bc+ab+ac+8}{\left(a-2\right)\left(b-2\right)\left(c-2\right)}\)
Chứng minh các đẳng thức sau:
a, \(\frac{3x}{x+y}=\frac{-3x\left(x-y\right)}{y^2-x^2}\left(x\ne-y,x\ne y\right)\)
b, \(\frac{x-2}{-x}=\frac{8xy^2}{12ay}\left(a\ne0,y\ne0\right)\)
c, \(\frac{x+y}{3a}=\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}\left(a\ne0,x\ne-y\right)\)
cho a,b,c >0 và a+b+c=1
chứng mỉnh rằng P=\(\frac{9}{2\left(ab+bc+ac\right)}+\frac{2}{a^2+b^2+c^2}\ge\frac{39}{2}\)
cm \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)
Với a,b,c >0.Chứng minh:
\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a+b=1, ab khác 0. Chứng minh rằng: \(\frac{a}{b^3-1}-\frac{b}{a^3-1}\) = \(\frac{2\left(b-a\right)}{a^2b^2+3}\)
thực hiện phép tính
a) \(\left(3-2x\right).\left(x+1\right)+x.\left(2x-1\right)\)
b) \(\frac{x^2+9}{x^2+3x}+\frac{6}{x+3}\)
c) \(\frac{2+x}{2-x}+\frac{4x^2}{4-x^2}+\frac{x-2}{2+x}\)
d) \(\left(x^3+4x^2+6x+4\right):\left(x+2\right)\)
cho a,b,c>0
CM \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)