\(2x^2+2\sqrt{2x}+1\)
viết biểu thức dưới dạng bình phương của một tổng
\(2x+2\sqrt{2x+1}\)
viết biểu thức dưới dạng bình phương của một tổng
Viết các biểu thức sau dưới dạng bình phương của một tổng (hiệu).
d, (2x-y)2+2(2x-y)+1
Giải chi tiết giúp mình.Rất cảm ơn.
Viết các biểu thức sau dưới dạng bình phương của một tổng (hiệu).
c, (2x-4y)2+2(2x-4y)+1
Giải chi tiết hộ mình với.Mình cảm ơn rất nhiều
\(\left(2x-4y\right)^2+2\left(2x-4y\right)+1=\left(2x-4y+1\right)^2\)
(2x-4y)2+2(2x-4y)+1
=(2x-4y)2+2(2x-4y)+12
=(2x-4y+1)2
Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu: (2x + 3y)^2+2.(2x+3y)+1
\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
Viết các đa thức sau đây dưới dạng bình phương của một tổng hoặc một hiệu: (2x+3y)^2 + 2.(2x + 3y) + 1
Viết các biểu thức sau dưới dạng bình phương một tổng: 2x y 2 + x 2 y 4 + 1
2x y 2 + x 2 y 4 + 1 = x y 2 2 + 2.x y 2 .1 + 1 2 = x y 2 + 1 2
Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
b) (2x + 3y)2 + 2 . (2x + 3y) + 1.
\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left[\left(2x+3y\right)+1\right]^2=\left(2x+3y+1\right)^2.\)
Hãy viết biểu thức sau dưới dạng bình phương của một tổng hay bình phương của một hiệu hay tích của các biểu thức:
9/4x2 +9y2/4-9y/2x
Bài làm:
Ta có: \(\frac{9}{4x^2}+\frac{9y^2}{4}-\frac{9y}{2x}\)
\(=\left(\frac{3}{2x}\right)^2-2.\frac{3}{2x}.\frac{3y}{2}+\left(\frac{3y}{2}\right)^2\)
\(=\left(\frac{3}{2x}-\frac{3y}{2}\right)^2\)
dạ mk cảm ơn bạn De Bruyne nha!
viết các biểu thức sau dưới dạng bình phương của một tổng hay một hiệu:
a) (x^2+9x+18)^2+2(x^2+9x)+37
b) x^2+y^2+2x+2y+2(x+1)(y+1)+2
c) x^2-2x(y+2)+y^2+4y+4
d) x^2+2x(y+1)+y^2+2y+1
a) Ta có: \(\left(x^2+9x+18\right)^2+2\left(x^2+9x\right)+37\)
\(=\left(x^2+9x+18\right)^2+2\cdot\left(x^2+9x+18\right)-36+37\)
\(=\left(x^2+9x+19\right)^2\)
b) Ta có: \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+2\left(x+1\right)\left(y+1\right)\)
\(=\left(x^2+2x+2+y^2+2y\right)^2\)
c) Ta có: \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2+2\cdot x\cdot\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x+y+2\right)^2\)
d) Ta có: \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2\cdot x\cdot\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)