Trong không gian oxyz, cho mp anpha: (a+b)x -2ay-bz+b=0 , và điểm M(1;1;1) . gọi H là hình chiếu vuông góc của M lên mp anpha . khi a, b thay đổi bt quỹ tích các điểm H thuộc đường tròn cố định , tính bán kính đường tròn đó
Trong không gian Oxyz, cho hai đường thẳng d1: \(\dfrac{x-1}{1}=\dfrac{y-2}{1}=\dfrac{z}{2}\)và d2: \(\dfrac{x-1}{1}=\dfrac{y-3}{2}=\dfrac{z-4}{3}\) và mp (P): 2x+2y+2z-5=0. Điểm M(a;b;c) thuộc mp (P) sao cho tổng khoảng cách từ M đến hai đường thẳng d1 và d2 đạt min. Tính a + 2b +c.
Bài này cần có 1 điều gì đó đặc biệt trong các đường - mặt để giải được (nếu ko chỉ dựa trên khoảng cách thông thường thì gần như bất lực). Thường khoảng cách dính tới đường vuông góc chung, thử mò dựa trên nó :)
Bây giờ chúng ta đi tìm đường vuông góc chung d3 của d1; d2, và hi vọng rằng giao điểm C của d3 với (P) sẽ là 1 điểm nằm giữa A và B với A và giao của d1 và d3, B là giao của d2 và d3 (nằm giữa chứ ko cần trung điểm), thường ý tưởng của người ra đề sẽ là như vậy. Khi đó điểm M sẽ trùng C. Còn C không nằm giữa A và B mà nằm ngoài thì đầu hàng cho đỡ mất thời gian (khi đó việc tìm cực trị sẽ rất lâu).
Quy pt d1 và d2 về dạng tham số, gọi A là 1 điểm thuộc d1 thì \(A\left(t+1;t+2;2t\right)\) và B là 1 điểm thuộc d2 thì \(B\left(t'+1;2t'+3;3t'+4\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(t'-t;2t'-t+1;3t'-2t+4\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{u_{d1}}=0\\\overrightarrow{AB}.\overrightarrow{u_{d2}}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t'-t+2t'-t+1+2\left(3t'-2t+4\right)=0\\t'-t+2\left(2t'-t+1\right)+3\left(3t'-2t+4\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}t=0\\t'=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2;0\right)\\B\left(0;1;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BA}=\left(1;1-1\right)\)
Phương trình AB hay d3: \(\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=-t\end{matrix}\right.\)
Giao điểm C của d3 và (P): \(2\left(1+t\right)+2\left(2+t\right)-2t-5=0\)
\(\Rightarrow C\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)
Ủa, ko chỉ nằm giữa luôn, mà người ta cho hẳn trung điểm cho cẩn thận :)
Vậy \(M\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)
Trong không gian Oxyz cho A(-3;2;4) và B(5;2;2). Mặt phẳng (P) x+y-3z+4= 0. Biết đường thẳng AB cắt mp(P) tại điểm M. Tính tỉ số MA/MB bằng
A. 1. B. 9/5. C. 5/9. D. căn 68 /11 .
\(\overrightarrow{AB}=\left(8;0;-2\right)=2\left(4;0;-1\right)\)
Phương trình AB có dạng: \(\left\{{}\begin{matrix}x=5+4t\\y=2\\z=2-t\end{matrix}\right.\)
Tọa độ M thỏa mãn:
\(5+4t+2-3\left(2-t\right)+4=0\) \(\Rightarrow t=-\dfrac{5}{7}\)
\(\Rightarrow M\left(\dfrac{15}{7};2;\dfrac{19}{7}\right)\) \(\Rightarrow\left\{{}\begin{matrix}MA=\dfrac{9\sqrt{17}}{7}\\MB=\dfrac{5\sqrt{17}}{7}\end{matrix}\right.\)
\(\Rightarrow\dfrac{MA}{MB}=\dfrac{9}{5}\)
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm M( 1; 2;3) và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho T = 1 O A 2 + 1 O B 2 + 1 O C 2 đạt giá trị nhỏ nhất có dạng (P): x + ay + bz + c = 0 . Tính S = a + b + c
A. 19.
B. 6
C. -9.
D. -5.
Trong không gian Oxyz cho A(0;1;1), B(2;-1;1), C(4;1;1) và (P): x+y+z-6=0. Xét điểm M(a;b;c) thuộc mp (P) sao cho M A → + 2 M B → + M C → đạt giá trị nhỏ nhất. Giá trị của 2a+4b+c bằng
A. 6
B. 12
C. 7
D. 5
Trong không gian với hệ tọa độ Oxyz, cho hai điểm
A (1;-3;2), B (3;5;-2). Phương trình mặt phẳng trung
trực của AB có dạng x + ay + bz + c =0.
Khi đó a + b + c bằng
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-3;2); B(3;5;-2). Phương trình mặt phẳng trung trực của AB có dạng x + a y + b z + c = 0. Khi đó a+b+c bằng
A. -4.
B. -3.
C. 2.
D. -2.
Trong không gian hệ tọa độ Oxyz, cho hai điểm A(1;-3;2), B(3;5;-2). Phương trình mặt phẳng trung trực của đoạn thẳng AB có dạng x + ay + bz + c = 0. Khi đó a + b + c bằng
A. -2
B. -4
C. -3
D. 2
Trong không gian Oxyz, cho A(0;0;-3), B(2;0;-1) và mp (P): 3x-8y+7z-1=0. Có bao nhiêu điểm C trên mặt phẳng (P) sao cho ABC đều.
A. vố số
B. 1
C. 3
D. 2
Đáp án D
Phương trình mặt phẳng trung trực của AB là ( α ) : x + z + 1 = 0
Vì tam giác ABC đều ⇒ C ∈ ( α ) mà
Vậy có 2 điểm C thỏa mãn yêu cầu bài toán.
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho T = 1 O A 2 + 1 O B 2 + 1 O C 2 đạt giá trị nhỏ nhất có dạng (P): x+ay+bz+c=0. Tính S=a+b+c
A. -5
B. 6
C. 19
D. -9