Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Bảo Cao Mạnh
Xem chi tiết
Đinh Thị Nhật Ánh
Xem chi tiết
Đinh Diệp
Xem chi tiết
Toyama Kazuha
31 tháng 7 2018 lúc 19:53

Gọi H là trực tâm của taam giác ta có
EF^2 = AC^2 - EF^2 = 49
=> EF =7
===================================
c/minh:

Giả sử AE _|_ CD, AF _|_ BC, Kẻ CM _|_ AB
Ta c/m AHFM là h.b.h và tam giác MEF vuông tại F
Ta có: FH _|_AE (tính chất trực tâm)
AB _|_ AE (gt)

=> AB//FH (1)

Do A, M, F,C , E nằm trên đường tròn đường kính AC (*)
=> ^CMF = ^CEF (góc chắn cung CF)

mà ^HAE = ^CEF (góc có cạnh tương ứng vuông góc)
=> ^HAE = ^CMF
=> MF//AH (2)

Từ (1), (2) => AHFM là h.b.h
=> AH =MF

do (*) M, F,C , E nằm trên đường tròn đường kính AC (*)

Mà ^MCE = 90o => ME là đường kính của đường tròn nói trên
=> ^MFE = 90o

=> MF^2 = ME^2 - EF^2 = AC^2 - EF^2 (AC =ME do AMCE là h.c.n)

Huy Hoàng
Xem chi tiết
Nguyễn Thị Minh Ngọc
Xem chi tiết

https://lazi.vn/users/dang_ky?u=kieu-anh.pham4

Khách vãng lai đã xóa
huyen thy phan
Xem chi tiết
im a banana
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2020 lúc 21:46

a) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{AEH}=90^0\)(HE⊥AB)

\(\widehat{AFH}=90^0\)(HF⊥AC)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒AH=EF(Hai đường chéo trong hình chữ nhật AEHF)

Nguyễn Minh Nguyệt
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết