cho tam giác nhọn ABC.
Cm: \(cosA+cosB+cosC=1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\)
cho tam giác ABC nhọn. Cmr:
a) \(sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\le\frac{1}{8}\)
b)\(cosA+cosB+cosC\le\frac{3}{2}\)
cho tam giác ABC nhọn. Cmr:
a)\(sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\le\frac{1}{8}\)
b)\(cosA+cosB+cosC\le\frac{3}{2}\)
chứng minh rằng
trong ΔABC ta có
cosA + cosB + cosC = 1+ 4sin\(\frac{A}{2}\)sin\(\frac{B}{2}\)sin\(\frac{C}{2}\)
cho A , B , C là 3 góc của tam giác ABC . chứng minh rằng : a) sin2A + sin2B + sin2C = 4sinAsinBsinC ; b) cosA + cosB + cosC = 1 = 4sin\(\frac{A}{2}\)sin\(\frac{B}{2}\)sin\(\frac{C}{2}\) ; c) cos2A + cos2B + cos2C = 1 - 2cosAcosBcosC
Cho A, B, C là 3 góc trong tam giác. Chứng minh rằng:
1, sin A + sin B - sin C = 4sin\(\dfrac{A}{2}\) sin \(\dfrac{B}{2}\)sin \(\dfrac{C}{2}\)
2, \(\dfrac{sinA+sinB-sinC}{cosA+cosB-cosC+1}=tan\dfrac{A}{2}tan\dfrac{B}{2}tan\dfrac{C}{2}\) (ΔABC nhọn)
3, \(\dfrac{cosA+cosB+cosC+3}{sinA+sinB+sinC}=tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\)
GIÚP MÌNH VỚI!!!
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
cho tam giác ABC chứng minh rằng:
cosA+cosB-cosC= \(4cos\frac{A}{2}.cos\frac{B}{2}.sin\frac{C}{2}-1\)
\(cosA+cosB-cosC=2cos\frac{A+B}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)
\(=2sin\frac{C}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)
\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)-1\)
\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)-1\)
\(=4cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}-1\)
Cho tam giác ABC. CMR:
a) sinA + sinB + sinC = 4cos(A/2)cos(B/2)cos(C/2)
b) cosA + cosB + cosC = 1 + 4sin(A/2)sin(B/2)sin(C/2)
c) sin2A + sin2B + sin2C = 4sinA.sinB.sinC
d) cos2A + cos2B + cos2C = -(1 + 4cosA.cosB.cosC)
Cho tam giác ABC. CMR:
a) sinA + sinB + sinC = 4cos(A/2)cos(B/2)cos(C/2)
b) cosA + cosB + cosC = 1 + 4sin(A/2)sin(B/2)sin(C/2)
c) sin2A + sin2B + sin2C = 4sinA.sinB.sinC
d) cos2A + cos2B + cos2C = -(1 + 4cosA.cosB.cosC)
Cho tam giác ABC. CMR:
a) sinA + sinB + sinC = 4cos(A/2)cos(B/2)cos(C/2)
b) cosA + cosB + cosC = 1 + 4sin(A/2)sin(B/2)sin(C/2)
c) sin2A + sin2B + sin2C = 4sinA.sinB.sinC
d) cos2A + cos2B + cos2C = -(1 + 4cosA.cosB.cosC)