Tìm GTNN:
a=x^2-2xy+2y^2+2x-10y+17
....ai pit giúp mk tí nha ,,đăng mãi chả thấy ai giúp cả
CHỨNG MINH :
a/ \(3x^2+y^2-2xy+4x+20\forall x,y\)
b/ \(5x^2+10y^2-6xy-4x-2y+3\forall x,y\)
AI GIÚP MK VS Ạ AI NHANH MK SẼ VOTE NHA
a) \(3x^2+y^2-2xy+4x+20=\left(x^2-2xy+y^2\right)+2\left(x^2+2x+1\right)+18=\left(x-y\right)^2+2\left(x+1\right)^2+18\ge18>0\forall x,y\)
\(ĐTXR\Leftrightarrow x=y=-1\)
giúp mk nha:
1,tìm GTNN của:
A=2x^2+9y^2-6xy-6x-12y+2004
B=x^2y^2+2x^2+24xy+16x+191
C=x^2+y^2+9z^2-2x+12y+6z+24
2.tìm GTLN:
D=-x^2+2xy-4y^2+2x+10y-8
tick và kb vs ai trả lời đúng và nhanh
mk cần gấp, cố gắng giúp mk trong tối nay hoặc sáng mai nhé!
cảm ơn nhiều!
B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15
= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15
( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3
A= 2x^2+9y^2-6xy-6x-12y+2004
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004
A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975
A= (x -3y +2)^2 + (x -5)^2 + 1975
( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3
D=-x^2+2xy-4y^2+2x+10y-8
D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
D= - (x - y - 1)^2 - 3(y - 2)^2 +5
=> Max D = 5 khi x= 3 và y=2
C = x^2 + y^2 + 9z^2 - 2x + 12y + 6z + 24
C = (x^2-2x+1)+(y^2 + 2y.6 + 36)+ [ (3z)^2 + 2.3z + 1] - 14
C= (x-1)^2 + (y+6)^2 + (3z+1)^2 - 14
....
mà chép lại đề câu B cho mik vs
CHỨNG MINH :
a/ \(x^2-8x+20>0\forall x\)
b/ \(6x-x^2-19< 0\forall x\)
c/ \(3x^2+y^2-2xy+4x+20>0\forall x,y\)
d/ \(5x^2+10y^2-6xy-4x-2y+3>0\forall x,y\)
AI GIÚP MK VS Ạ AI NHANH MK SẼ VOTE NHA
a: Ta có: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(-x^2+6x-19\)
\(=-\left(x^2-6x+19\right)\)
\(=-\left(x^2-6x+9+10\right)\)
\(=-\left(x-3\right)^2-10< 0\forall x\)
Tìm MIN D=x2-2xy+2xy+2y2+2x-10y+17
\(D=x^2-2xy+2xy+2y^2+2x-10y+17\)
\(D=\left(x^2+2x+1\right)+2\left(y^2-5y+\frac{25}{4}\right)+\frac{7}{2}\)
\(D=\left(x+1\right)^2+2\left(y-\frac{5}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}\)
Vậy GTNN của D là \(\frac{7}{2}\)khi x = -1; y = \(\frac{5}{2}\)
1.Tìm giá trị nhỏ nhất
A = 9x²+6x+15
B= 2x²-4x-8
C=x²-2xy+2y²+2x-10y+17
D=x²-xy+y²-2x-2y
E=(x²+x-6)(x²+x+2)
F=(x+1)(x+2)(x+3)(x+4)
2.Tìm giá trị lớn nhất
G=4x-x²
H=25-x-5x2
Ai Giúp Mình Làm Với Ạ. Mình đang cần gấp. Cảm ơn trc ạ ❤
A = 9x2 + 6x + 15
A = [(3x + 6x + 1] + 14
A = (3x + 1)2 + 14 \(\ge\)14
Dấu = xảy ra \(\Leftrightarrow\)3x + 1 = 0
\(\Rightarrow\)3x = - 1
\(\Rightarrow\)x = - 1 / 3
Min A = 14 \(\Leftrightarrow\)x = - 1 / 3
Tìm GTNN: A = x^2 - 2xy + 2y^2 + 2x - 10y +17
A=[(X2-2XY+Y2)+2(X-Y)+1]+(Y2-8Y+16)=(X-Y+1)2+(Y-4)2>=0
=>Amin=0 khi y=4;x=3
Tìm GTNN của
C= x2 +10y2 + 2xy - 2x + 6y + 20
ai làm được giúp với
Có : C = [(x^2+2xy+y^2)-2.(x+y)+1] + (9y^2 + 8y + 16/9) + 155/9
= (x+y-1)^2 + (3y+4/3)^2 + 155/9 >= 155/9
Dấu "=" xảy ra <=> x+y-1 = 0 và 3y+4/3 =0
<=> x= 13/9 ; y= -4/9
Tìm GTNN của
A: x2-2xy+2y2+2x-10y+17
A= (x2-2xy +y2)+(2x-2y)+1+(y2-8y+16)
A= (x-y)2 +2(x-y) +1 +(y-4)2
A= (x-y+1)2 +(y-4)2
Vì (x-y+1)2 +(y-4)2 >= 0 với mọi x,y
Dấu = xảy ra <=> x-y+1=0 và y-4=0
<=> x=3 và y=4
Tìm x, y nguyên thỏa mãn:
a) x - 2xy + y = 0
b) 2xy + x- 2y = 4
c) 3xy - 2x +5y = 29
d) 25 - y^2 = 8 . ( x - 2009 )^2
e) 6x^2 + 5y^2 = 74
f) y^2 + 8 . ( x - 2010 )^2 = 36
Giúp mình nha mai cô kiểm tra rồi, ai làm được phần nào thì làm xong mình sẽ tick cho nhé
#Toán_7
Lần trước phần a) mình đăng nhầm nhé xin lỗi nha giúp mình với ạ-------NYA-------
\(6x^2+5y^2=74\Rightarrow5y^2\le74\Rightarrow y^2< 16\Rightarrow\left|y\right|< 4\Rightarrow-4< y< 4\)(1)
e,\(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)(2)
Từ (1) và (2) kết hợp với y là số nguyên thì \(y\in\left\{-2;0;2\right\}\)
Thay vào đề bài thử loại y = 0 ta được 4 cặp số thỏa mãn là:
\(\left(x;y\right)\in\left\{\left(3;2\right),\left(3;-2\right),\left(-3;2\right),\left(-3;-2\right)\right\}\)
a)\(x-2xy+y=0\)
\(\Leftrightarrow2x-4xy+2y=0\)
\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=-1.-1\)
giải ra ta đc (x;y)= (0;0) ; (1;1)