cho x,y thuộc R thoa mản x2+y2=1
tìm GTLN P=\(\frac{x}{y+\sqrt{2}}\)
Cho x,y là các số thực thỏa mản :
\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
CMR : x2+y2 =1
cho x, y thuộc R thỏa mãn x2 + y2 = 1 . Tìm GTLN của biểu thức \(P=\frac{x}{y+\sqrt{2}}\)
x + y = 1
tim min
1/(x^2 + y^2) + 2/(xy) -4xy
Cho x2+y2+z2=2 tìm GTLN P=x2/x2+yz+x+1 + y+z/x+y+z+1 + 1/xyz+3
Với các số thực dương x, y và x2+ y2 ≤ 2, tìm GTLN của P= \(\sqrt{x\left(14x+10y\right)}\) + \(\sqrt{y\left(14y+10x\right)}\)
Ta có: \(4\ge2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow x+y\le2\)
Ta có: \(P=\sqrt{x\left(14x+10y\right)}+\sqrt{y\left(14y+10x\right)}\)
\(=\sqrt{\dfrac{24x\left(14x+10y\right)}{24}}+\sqrt{\dfrac{24y\left(14y+10x\right)}{24}}\le\dfrac{\dfrac{24x+14x+10y}{2}}{\sqrt{24}}+\dfrac{\dfrac{24y+14y+10x}{2}}{\sqrt{24}}\)
\(\Leftrightarrow P\le\dfrac{24\left(x+y\right)}{2\sqrt{6}}\le\dfrac{24.2}{2\sqrt{6}}=4\sqrt{6}\)
Dấu "=" xảy ra ⇔ x = y = 1
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
Ta có : \(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Áp dụng vào bài toán có :
\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)
Áp dụng BĐT Svacxo ta có :
\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\), \(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\), \(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)
Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)
P/s : Dấu "=" không chắc lắm :))
thanks bạn mình hiểu sương sương rồi:))
Cho x , y thuộc R
Tìm Min A =
x2+y2+2/(x)+3/(x+y)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Cho a,b,x,y∈R thoả mãn a2+b2=x2+y2=1.
Chứng minh rằng:
\(-\sqrt{2}\) ≤ a(x+y)+b(x-y) ≤\(\sqrt{2}\)