cho x,y>0 thỏa mãn x+y\(\le\)3.tìm giá trị nhỏ nhất của
A=\(\frac{2}{3xy}+\sqrt{\frac{3}{y+1}}\)
Cho x,y là các số dương thỏa mãn x + y \(\le\)3. Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{2}{3xy}+\sqrt[]{\dfrac{3}{y+1}}\)
Cho x,y,z > 0 và thỏa mãn x+y+z=3. Tìm giá trị nhỏ nhất của:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
Ta có:
\(3=x+y+z\ge3\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz\le1\)
Ta lại có:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{3}{\sqrt[6]{xyz}}\ge\frac{3}{1}=3\)
1. CHo 2 số x,y > 0 thõa mãn x + y = 1. TÌm giá trị nhỏ nhất của A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}+3xy\)
2. Cho a,b,c > 0 thõa mãn abc = 1. CNR: \(\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge1\)
3. Cho a,b,c > 0 thõa mãn : a +b + c \(\le\)\(\sqrt{3}\)
TÌm GTNN A = \(\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\)
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
cho x,y>0 thỏa mãn x+y\(\le\)2.Tìm giá trị nhỏ nhất của A=\(x+y+\frac{2}{x}+\frac{2}{y}\)
\(A=x+y+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\frac{1}{x}+\frac{1}{y}\)
Theo bđt cô si : \(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\) và \(y+\frac{1}{y}\ge2\sqrt{y\cdot\frac{1}{y}}=2\)
Theo bđt Bunhiacopxkia dạng phân thức : \(\frac{1}{x}+\frac{1}{y}=\frac{1^2}{x}+\frac{1^2}{y}=\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\ge\frac{4}{2}=2\)
Cộng vế theo vế 3 bđt trên ta có : \(A\ge2+2+2=6\)
Dấu = xảy ra khi : x=y=1
co \(A=2\left(x+\frac{1}{x}\right)+2\left(y+\frac{1}{y}\right)-2\left(x+y\right)..\)
ap dung bdt co- si cho 2 so duong: \(a+b\ge2\sqrt{ab}.\)dau = khi a=b ta co
\(A\ge2.2\sqrt{x.\frac{1}{x}}+2.2\sqrt{y.\frac{1}{y}}-2.2\)
\(\Leftrightarrow A\ge4+4-4=4.\)
dau = xay ra khi a=b=2:1=1.
kl
1)cho a,b,c dương thỏa mãn abc=1
tìm giá trị nhỏ nhất của B=\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+a^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ca}\)
2) cho x,y,z dương
tìm giá trị nhỏ nhất của P=\(x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
1. cho x,y là các số dương thỏa mãn x + y < (h) = 1 .Tìm giá trị nhỏ nhất của biểu thức : A= \(\frac{1}{x^3+3xy^2}\)+\(\frac{1}{y^3+3x^2y}\)
2. a phân tích thành nhân tử (x+y)^2-(x+y)-6
b tìm các cặp giá trị (x;y) nguyên thỏa mãn phương trình sau:
2x^2 -x(2y-1)=y+12
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
Cho x,y,z>0 thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\). Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{\sqrt{2x^2+y^2}}{xy}+\frac{\sqrt{2y^2+z^2}}{yz}+\frac{\sqrt{2z^2+x^2}}{zx}\)
ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)
Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)
\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla
Cho x,y,z>0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{\sqrt{2x^2+y^2}}{xy}+\frac{\sqrt{2y^2+z^2}}{yz}+\frac{\sqrt{2z^2+x^2}}{zx}\)
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}=3\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}+\frac{1}{3\sqrt{x}+2\sqrt{y}+3\sqrt{z}}+\frac{1}{2\sqrt{x}+3\sqrt{y}+3\sqrt{z}}\)